En una era en la que la privacidad de los datos es primordial, configurar su propio modelo de idioma local (LLM) proporciona una solución crucial tanto para empresas como para individuos. Este tutorial está diseñado para guiarlo a través del proceso de creación de un chatbot personalizado usando Ollama , Python 3 y ChromaDB , todos alojados localmente en su sistema. Estas son las razones clave por las que necesita este tutorial:
Este tutorial le permitirá crear un chatbot local sólido y seguro, adaptado a sus necesidades, sin comprometer la privacidad ni el control.
Recuperación-Generación Aumentada (RAG) es una técnica avanzada que combina las fortalezas de la recuperación de información y la generación de texto para crear respuestas más precisas y contextualmente relevantes. Aquí hay un desglose de cómo funciona RAG y por qué es beneficioso:
RAG es un modelo híbrido que mejora las capacidades de los modelos de lenguaje incorporando una base de conocimiento externa o un almacén de documentos. El proceso involucra dos componentes principales:
Al configurar una aplicación RAG local con herramientas como Ollama, Python y ChromaDB, puede disfrutar de los beneficios de los modelos de lenguaje avanzados mientras mantiene el control sobre sus datos y opciones de personalización.
La ejecución de modelos de lenguaje grandes (LLM) como los utilizados en Recuperación-Generación Aumentada (RAG) requiere una potencia computacional significativa. Uno de los componentes clave que permite el procesamiento e incorporación eficiente de datos en estos modelos es la Unidad de procesamiento de gráficos (GPU). He aquí por qué las GPU son esenciales para esta tarea y cómo afectan el rendimiento de su configuración LLM local:
Una GPU es un procesador especializado diseñado para acelerar la renderización de imágenes y vídeos. A diferencia de las Unidades Centrales de Procesamiento (CPU), que están optimizadas para tareas de procesamiento secuencial, las GPU destacan en el procesamiento paralelo. Esto los hace particularmente adecuados para los complejos cálculos matemáticos requeridos por el aprendizaje automático y los modelos de aprendizaje profundo.
Al configurar un LLM local, la elección de la GPU puede afectar significativamente el rendimiento. Aquí hay algunos factores a considerar:
Invertir en una GPU de alto rendimiento es crucial para ejecutar modelos LLM localmente. Garantiza un procesamiento de datos más rápido, un entrenamiento de modelos eficiente y una generación de respuestas rápida, lo que hace que su aplicación RAG local sea más sólida y confiable. Al aprovechar el poder de las GPU, puede aprovechar plenamente los beneficios de alojar su propio chatbot personalizado, adaptado a sus necesidades específicas y requisitos de privacidad de datos.
Antes de sumergirse en la configuración, asegúrese de cumplir con los siguientes requisitos previos:
Para instalar y configurar nuestro entorno Python 3, siga estos pasos: Descargue y configure Python 3 en su máquina. Luego asegúrese de que Python 3 esté instalado y se ejecute correctamente:
$ python3 --version # Python 3.11.7
Crea una carpeta para tu proyecto, por ejemplo, local-rag
:
$ mkdir local-rag $ cd local-rag
Cree un entorno virtual llamado venv
:
$ python3 -m venv venv
Activar el entorno virtual:
$ source venv/bin/activate # Windows # venv\Scripts\activate
Instale ChromaDB usando pip:
$ pip install --q chromadb
Instale las herramientas Langchain para trabajar perfectamente con su modelo:
$ pip install --q unstructured langchain langchain-text-splitters $ pip install --q "unstructured[all-docs]"
Instale Flask para ofrecer su aplicación como un servicio HTTP:
$ pip install --q flask
Para instalar Ollama, siga estos pasos: Diríjase a la página de descarga de Ollama y descargue el instalador para su sistema operativo. Verifique su instalación de Ollama ejecutando:
$ ollama --version # ollama version is 0.1.47
Extraiga el modelo LLM que necesita. Por ejemplo, para utilizar el modelo Mistral:
$ ollama pull mistral
Extraiga el modelo de incrustación de texto. Por ejemplo, para utilizar el modelo Nomic Embed Text:
$ ollama pull nomic-embed-text
Luego ejecuta tus modelos de Ollama:
$ ollama serve
Ahora que ha configurado su entorno con Python, Ollama, ChromaDB y otras dependencias, es hora de crear su aplicación RAG local personalizada. En esta sección, analizaremos el código Python práctico y brindaremos una descripción general de cómo estructurar su aplicación.
app.py
Este es el archivo principal de la aplicación Flask. Define rutas para incrustar archivos en la base de datos de vectores y recuperar la respuesta del modelo.
import os from dotenv import load_dotenv load_dotenv() from flask import Flask, request, jsonify from embed import embed from query import query from get_vector_db import get_vector_db TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp') os.makedirs(TEMP_FOLDER, exist_ok=True) app = Flask(__name__) @app.route('/embed', methods=['POST']) def route_embed(): if 'file' not in request.files: return jsonify({"error": "No file part"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 embedded = embed(file) if embedded: return jsonify({"message": "File embedded successfully"}), 200 return jsonify({"error": "File embedded unsuccessfully"}), 400 @app.route('/query', methods=['POST']) def route_query(): data = request.get_json() response = query(data.get('query')) if response: return jsonify({"message": response}), 200 return jsonify({"error": "Something went wrong"}), 400 if __name__ == '__main__': app.run(host="0.0.0.0", port=8080, debug=True)
embed.py
Este módulo maneja el proceso de incrustación, incluido guardar archivos cargados, cargar y dividir datos y agregar documentos a la base de datos vectorial.
import os from datetime import datetime from werkzeug.utils import secure_filename from langchain_community.document_loaders import UnstructuredPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from get_vector_db import get_vector_db TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp') # Function to check if the uploaded file is allowed (only PDF files) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'pdf'} # Function to save the uploaded file to the temporary folder def save_file(file): # Save the uploaded file with a secure filename and return the file path ct = datetime.now() ts = ct.timestamp() filename = str(ts) + "_" + secure_filename(file.filename) file_path = os.path.join(TEMP_FOLDER, filename) file.save(file_path) return file_path # Function to load and split the data from the PDF file def load_and_split_data(file_path): # Load the PDF file and split the data into chunks loader = UnstructuredPDFLoader(file_path=file_path) data = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_documents(data) return chunks # Main function to handle the embedding process def embed(file): # Check if the file is valid, save it, load and split the data, add to the database, and remove the temporary file if file.filename != '' and file and allowed_file(file.filename): file_path = save_file(file) chunks = load_and_split_data(file_path) db = get_vector_db() db.add_documents(chunks) db.persist() os.remove(file_path) return True return False
query.py
Este módulo procesa las consultas de los usuarios generando múltiples versiones de la consulta, recuperando documentos relevantes y proporcionando respuestas basadas en el contexto.
import os from langchain_community.chat_models import ChatOllama from langchain.prompts import ChatPromptTemplate, PromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain.retrievers.multi_query import MultiQueryRetriever from get_vector_db import get_vector_db LLM_MODEL = os.getenv('LLM_MODEL', 'mistral') # Function to get the prompt templates for generating alternative questions and answering based on context def get_prompt(): QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to generate five different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""", ) template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) return QUERY_PROMPT, prompt # Main function to handle the query process def query(input): if input: # Initialize the language model with the specified model name llm = ChatOllama(model=LLM_MODEL) # Get the vector database instance db = get_vector_db() # Get the prompt templates QUERY_PROMPT, prompt = get_prompt() # Set up the retriever to generate multiple queries using the language model and the query prompt retriever = MultiQueryRetriever.from_llm( db.as_retriever(), llm, prompt=QUERY_PROMPT ) # Define the processing chain to retrieve context, generate the answer, and parse the output chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) response = chain.invoke(input) return response return None
get_vector_db.py
Este módulo inicializa y devuelve la instancia de base de datos vectorial utilizada para almacenar y recuperar incrustaciones de documentos.
import os from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores.chroma import Chroma CHROMA_PATH = os.getenv('CHROMA_PATH', 'chroma') COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'local-rag') TEXT_EMBEDDING_MODEL = os.getenv('TEXT_EMBEDDING_MODEL', 'nomic-embed-text') def get_vector_db(): embedding = OllamaEmbeddings(model=TEXT_EMBEDDING_MODEL,show_progress=True) db = Chroma( collection_name=COLLECTION_NAME, persist_directory=CHROMA_PATH, embedding_function=embedding ) return db
Cree un archivo .env
para almacenar sus variables de entorno:
TEMP_FOLDER = './_temp' CHROMA_PATH = 'chroma' COLLECTION_NAME = 'local-rag' LLM_MODEL = 'mistral' TEXT_EMBEDDING_MODEL = 'nomic-embed-text'
Ejecute el archivo app.py
para iniciar su servidor de aplicaciones:
$ python3 app.py
Una vez que el servidor se esté ejecutando, puede comenzar a realizar solicitudes a los siguientes puntos finales:
$ curl --request POST \ --url http://localhost:8080/embed \ --header 'Content-Type: multipart/form-data' \ --form file=@/Users/nassermaronie/Documents/Nasser-resume.pdf # Response { "message": "File embedded successfully" }
$ curl --request POST \ --url http://localhost:8080/query \ --header 'Content-Type: application/json' \ --data '{ "query": "Who is Nasser?" }' # Response { "message": "Nasser Maronie is a Full Stack Developer with experience in web and mobile app development. He has worked as a Lead Full Stack Engineer at Ulventech, a Senior Full Stack Engineer at Speedoc, a Senior Frontend Engineer at Irvins, and a Software Engineer at Tokopedia. His tech stacks include Typescript, ReactJS, VueJS, React Native, NodeJS, PHP, Golang, Python, MySQL, PostgresQL, MongoDB, Redis, AWS, Firebase, and Supabase. He has a Bachelor's degree in Information System from Universitas Amikom Yogyakarta." }
Si sigue estas instrucciones, podrá ejecutar e interactuar de manera efectiva con su aplicación RAG local personalizada utilizando Python, Ollama y ChromaDB, adaptadas a sus necesidades. Ajuste y amplíe la funcionalidad según sea necesario para mejorar las capacidades de su aplicación.
Al aprovechar las capacidades de la implementación local, no solo protege la información confidencial sino que también optimiza el rendimiento y la capacidad de respuesta. Ya sea que esté mejorando las interacciones con los clientes o optimizando los procesos internos, una aplicación RAG implementada localmente ofrece flexibilidad y solidez para adaptarse y crecer con sus requisitos.
https://github.com/firstpersoncode/local-rag
¡Feliz codificación!