Veri gizliliğinin çok önemli olduğu bir çağda, kendi yerel dil modelinizi (LLM) oluşturmak, hem şirketler hem de bireyler için çok önemli bir çözüm sağlar. Bu eğitim, tümü sisteminizde yerel olarak barındırılan Ollama , Python 3 ve ChromaDB'yi kullanarak özel bir sohbet robotu oluşturma sürecinde size rehberlik etmek üzere tasarlanmıştır. Bu eğitime ihtiyaç duymanızın temel nedenleri şunlardır:
Bu eğitim, gizlilik veya kontrolden ödün vermeden, ihtiyaçlarınıza göre uyarlanmış, sağlam ve güvenli bir yerel sohbet robotu oluşturmanıza yardımcı olacaktır.
Alma-Artırılmış Oluşturma (RAG), daha doğru ve bağlamsal olarak alakalı yanıtlar oluşturmak için bilgi alma ve metin oluşturmanın güçlü yönlerini birleştiren gelişmiş bir tekniktir. RAG'ın nasıl çalıştığına ve neden faydalı olduğuna dair bir dökümü burada bulabilirsiniz:
RAG, harici bir bilgi tabanı veya belge deposu ekleyerek dil modellerinin yeteneklerini geliştiren hibrit bir modeldir. Süreç iki ana bileşenden oluşur:
Ollama, Python ve ChromaDB gibi araçlarla yerel bir RAG uygulaması kurarak, verileriniz ve özelleştirme seçenekleriniz üzerinde kontrolü korurken gelişmiş dil modellerinin avantajlarından da yararlanabilirsiniz.
Alma-Artırılmış Üretimde (RAG) kullanılanlar gibi büyük dil modellerini (LLM'ler) çalıştırmak, önemli miktarda hesaplama gücü gerektirir. Verilerin verimli bir şekilde işlenmesini ve bu modellere yerleştirilmesini sağlayan temel bileşenlerden biri Grafik İşleme Birimidir (GPU). GPU'ların bu görev için neden önemli olduğunu ve yerel LLM kurulumunuzun performansını nasıl etkilediklerini burada bulabilirsiniz:
GPU, görüntülerin ve videoların işlenmesini hızlandırmak için tasarlanmış özel bir işlemcidir. Sıralı işleme görevleri için optimize edilmiş Merkezi İşlem Birimlerinin (CPU'lar) aksine, GPU'lar paralel işlemede mükemmeldir. Bu, onları makine öğrenimi ve derin öğrenme modellerinin gerektirdiği karmaşık matematiksel hesaplamalar için özellikle uygun hale getiriyor.
Yerel bir LLM kurarken GPU seçimi performansı önemli ölçüde etkileyebilir. Göz önünde bulundurulması gereken bazı faktörler şunlardır:
Yüksek performanslı bir GPU'ya yatırım yapmak, LLM modellerini yerel olarak çalıştırmak için çok önemlidir. Daha hızlı veri işleme, verimli model eğitimi ve hızlı yanıt oluşturma olanağı sunarak yerel RAG uygulamanızı daha sağlam ve güvenilir hale getirir. GPU'ların gücünden yararlanarak, özel ihtiyaçlarınıza ve veri gizliliği gereksinimlerinize göre uyarlanmış kendi özel sohbet robotunuzu barındırmanın faydalarından tam olarak yararlanabilirsiniz.
Kuruluma başlamadan önce aşağıdaki önkoşulların yerine getirildiğinden emin olun:
Python 3 ortamımızı kurmak ve kurmak için şu adımları izleyin: Python 3'ü makinenize indirin ve kurun . Ardından Python 3'ünüzün kurulduğundan ve başarıyla çalıştığından emin olun:
$ python3 --version # Python 3.11.7
Projeniz için local-rag
gibi bir klasör oluşturun:
$ mkdir local-rag $ cd local-rag
venv
adında bir sanal ortam oluşturun:
$ python3 -m venv venv
Sanal ortamı etkinleştirin:
$ source venv/bin/activate # Windows # venv\Scripts\activate
ChromaDB'yi pip kullanarak yükleyin:
$ pip install --q chromadb
Modelinizle sorunsuz bir şekilde çalışmak için Langchain araçlarını yükleyin:
$ pip install --q unstructured langchain langchain-text-splitters $ pip install --q "unstructured[all-docs]"
Uygulamanızı bir HTTP hizmeti olarak sunmak için Flask'ı yükleyin:
$ pip install --q flask
Ollama'yı yüklemek için şu adımları izleyin: Ollama indirme sayfasına gidin ve işletim sisteminize uygun yükleyiciyi indirin. Ollama kurulumunuzu aşağıdakileri çalıştırarak doğrulayın:
$ ollama --version # ollama version is 0.1.47
İhtiyacınız olan LLM modelini çekin. Örneğin Mistral modelini kullanmak için:
$ ollama pull mistral
Metin yerleştirme modelini çekin. Örneğin, Nomic Gömme Metin modelini kullanmak için:
$ ollama pull nomic-embed-text
Ardından Ollama modellerinizi çalıştırın:
$ ollama serve
Artık ortamınızı Python, Ollama, ChromaDB ve diğer bağımlılıklarla kurduğunuza göre özel yerel RAG uygulamanızı oluşturmanın zamanı geldi. Bu bölümde uygulamalı Python kodunu inceleyeceğiz ve uygulamanızı nasıl yapılandıracağınıza dair bir genel bakış sunacağız.
app.py
Bu ana Flask uygulama dosyasıdır. Dosyaları vektör veritabanına gömmek ve modelden yanıt almak için yolları tanımlar.
import os from dotenv import load_dotenv load_dotenv() from flask import Flask, request, jsonify from embed import embed from query import query from get_vector_db import get_vector_db TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp') os.makedirs(TEMP_FOLDER, exist_ok=True) app = Flask(__name__) @app.route('/embed', methods=['POST']) def route_embed(): if 'file' not in request.files: return jsonify({"error": "No file part"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 embedded = embed(file) if embedded: return jsonify({"message": "File embedded successfully"}), 200 return jsonify({"error": "File embedded unsuccessfully"}), 400 @app.route('/query', methods=['POST']) def route_query(): data = request.get_json() response = query(data.get('query')) if response: return jsonify({"message": response}), 200 return jsonify({"error": "Something went wrong"}), 400 if __name__ == '__main__': app.run(host="0.0.0.0", port=8080, debug=True)
embed.py
Bu modül, yüklenen dosyaların kaydedilmesi, verilerin yüklenmesi ve bölünmesi ve belgelerin vektör veritabanına eklenmesi de dahil olmak üzere yerleştirme sürecini yönetir.
import os from datetime import datetime from werkzeug.utils import secure_filename from langchain_community.document_loaders import UnstructuredPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from get_vector_db import get_vector_db TEMP_FOLDER = os.getenv('TEMP_FOLDER', './_temp') # Function to check if the uploaded file is allowed (only PDF files) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'pdf'} # Function to save the uploaded file to the temporary folder def save_file(file): # Save the uploaded file with a secure filename and return the file path ct = datetime.now() ts = ct.timestamp() filename = str(ts) + "_" + secure_filename(file.filename) file_path = os.path.join(TEMP_FOLDER, filename) file.save(file_path) return file_path # Function to load and split the data from the PDF file def load_and_split_data(file_path): # Load the PDF file and split the data into chunks loader = UnstructuredPDFLoader(file_path=file_path) data = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_documents(data) return chunks # Main function to handle the embedding process def embed(file): # Check if the file is valid, save it, load and split the data, add to the database, and remove the temporary file if file.filename != '' and file and allowed_file(file.filename): file_path = save_file(file) chunks = load_and_split_data(file_path) db = get_vector_db() db.add_documents(chunks) db.persist() os.remove(file_path) return True return False
query.py
Bu modül, sorgunun birden çok sürümünü oluşturarak, ilgili belgeleri alarak ve bağlama dayalı yanıtlar sağlayarak kullanıcı sorgularını işler.
import os from langchain_community.chat_models import ChatOllama from langchain.prompts import ChatPromptTemplate, PromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain.retrievers.multi_query import MultiQueryRetriever from get_vector_db import get_vector_db LLM_MODEL = os.getenv('LLM_MODEL', 'mistral') # Function to get the prompt templates for generating alternative questions and answering based on context def get_prompt(): QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to generate five different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""", ) template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) return QUERY_PROMPT, prompt # Main function to handle the query process def query(input): if input: # Initialize the language model with the specified model name llm = ChatOllama(model=LLM_MODEL) # Get the vector database instance db = get_vector_db() # Get the prompt templates QUERY_PROMPT, prompt = get_prompt() # Set up the retriever to generate multiple queries using the language model and the query prompt retriever = MultiQueryRetriever.from_llm( db.as_retriever(), llm, prompt=QUERY_PROMPT ) # Define the processing chain to retrieve context, generate the answer, and parse the output chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) response = chain.invoke(input) return response return None
get_vector_db.py
Bu modül, belge yerleştirmelerini depolamak ve almak için kullanılan vektör veritabanı örneğini başlatır ve döndürür.
import os from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores.chroma import Chroma CHROMA_PATH = os.getenv('CHROMA_PATH', 'chroma') COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'local-rag') TEXT_EMBEDDING_MODEL = os.getenv('TEXT_EMBEDDING_MODEL', 'nomic-embed-text') def get_vector_db(): embedding = OllamaEmbeddings(model=TEXT_EMBEDDING_MODEL,show_progress=True) db = Chroma( collection_name=COLLECTION_NAME, persist_directory=CHROMA_PATH, embedding_function=embedding ) return db
Ortam değişkenlerinizi depolamak için .env
dosyası oluşturun:
TEMP_FOLDER = './_temp' CHROMA_PATH = 'chroma' COLLECTION_NAME = 'local-rag' LLM_MODEL = 'mistral' TEXT_EMBEDDING_MODEL = 'nomic-embed-text'
Uygulama sunucunuzu başlatmak için app.py
dosyasını çalıştırın:
$ python3 app.py
Sunucu çalışmaya başladıktan sonra aşağıdaki uç noktalara istekte bulunmaya başlayabilirsiniz:
$ curl --request POST \ --url http://localhost:8080/embed \ --header 'Content-Type: multipart/form-data' \ --form file=@/Users/nassermaronie/Documents/Nasser-resume.pdf # Response { "message": "File embedded successfully" }
$ curl --request POST \ --url http://localhost:8080/query \ --header 'Content-Type: application/json' \ --data '{ "query": "Who is Nasser?" }' # Response { "message": "Nasser Maronie is a Full Stack Developer with experience in web and mobile app development. He has worked as a Lead Full Stack Engineer at Ulventech, a Senior Full Stack Engineer at Speedoc, a Senior Frontend Engineer at Irvins, and a Software Engineer at Tokopedia. His tech stacks include Typescript, ReactJS, VueJS, React Native, NodeJS, PHP, Golang, Python, MySQL, PostgresQL, MongoDB, Redis, AWS, Firebase, and Supabase. He has a Bachelor's degree in Information System from Universitas Amikom Yogyakarta." }
Bu talimatları izleyerek ihtiyaçlarınıza göre uyarlanmış Python, Ollama ve ChromaDB'yi kullanarak özel yerel RAG uygulamanızı etkili bir şekilde çalıştırabilir ve etkileşimde bulunabilirsiniz. Uygulamanızın yeteneklerini geliştirmek için işlevselliği gerektiği gibi ayarlayın ve genişletin.
Yerel dağıtımın yeteneklerinden yararlanarak yalnızca hassas bilgileri korumakla kalmaz, aynı zamanda performansı ve yanıt verme hızını da optimize edersiniz. İster müşteri etkileşimlerini geliştiriyor ister dahili süreçleri kolaylaştırıyor olun, yerel olarak dağıtılan bir RAG uygulaması, gereksinimlerinize uyum sağlamanız ve ihtiyaçlarınıza göre büyümeniz için esneklik ve sağlamlık sunar.
https://github.com/firstpersoncode/local-rag
Mutlu kodlama!