Zdravotníckemu priemyslu často trvá veky, kým si osvojí nové technológie, pretože musí preskočiť početné regulačné obruče. Reakcia na umelú inteligenciu však bola iná. Nespočetné množstvo profesionálov už experimentuje s prediktívnymi a analytickými schopnosťami AI na zefektívnenie diagnostiky.
Vedci nedávno tvrdili, že AI dokáže identifikovať typ choroby, ktorú človek má – a ako ďaleko pokročila – jednoduchým pohľadom do úst. Táto technológia prešla dlhú cestu, ale dokáže predpovedať choroby iba pomocou farieb jazyka na diagnostiku?
Výskumníci zo Strednej technickej univerzity v Bagdade v Iraku a University of South Australia v Adelaide v Austrálii nedávno zistili, že technológia AI dokáže analyzovať farby jazyka na diagnostiku. Vyvinuli systém počítačového videnia, ktorý spracováva a klasifikuje obrázky pomocou modelov farebného priestoru, ktoré poskytujú merateľné hodnoty odtieňov a jasu.
Na školenie a testovanie použili tisíce obrázkov, z ktorých mnohé pochádzali z Fakultnej nemocnice Al-Hussein v Iraku a Mosul General Hospital v Mosule. Trénovali model na skutočných ľuďoch so skutočnými chorobami, nie na syntetickom súbore údajov. Takéto rozdiely sú nevyhnutné pri vývoji nástroja na diagnostické účely.
Výskumníci klasifikovali obrázky do kategórií ružovej, bielej, červenej, žltej, zelenej, modrej alebo šedej, aby ich modely dokázali identifikovať farby za akýchkoľvek svetelných podmienok. Celkovo trénovali sedem. Najvýkonnejšia bola vytvorená pomocou Extreme Gradient Boost (XGBoost) – open source knižnice strojového učenia – ktorá
Ich výsledky ma prekvapili. Úprimne povedané, nečakal som, že ich systém prekoná medicínskych profesionálov. Hoci rôzne výskumné skupiny vyvinuli podobné diagnostické modely na iné účely, len málo z nich je takto presných. Výskumy ukazujú, že aj vyškolení lekári s dlhoročnými skúsenosťami to dokážu len správne
Priznám sa, myslel som si, že pozerať sa na jazyk pri predpovedaní choroby je zvláštne. Zdalo sa, že s nejakou metódou ľudia prišli skôr, ako existovala moderná medicína. Aby som bol spravodlivý, čiastočne som mal pravdu. Použitie farieb jazyka na diagnostiku je založené na vyše 2000-ročnej tradičnej čínskej lekárskej praxi.
Zo všetkých charakteristík jazyka, vrátane tvaru, štruktúry a vlhkosti, farby
Začervenanie môže znamenať, že mám nezvyčajne vysokú horúčku alebo nedostatok vitamínov. Výskum ukazuje, že existuje a
Zatiaľ čo zdravotníci majú desiatky diagnostických systémov, mnohí stále kontrolujú jazyky, pretože relatívne málo podmienok ovplyvňuje jeho farbu. Ak dôjde k viditeľnému sfarbeniu, môžu zúžiť koreň problému. V porovnaní s krvným testom, ktorý poskytuje presné údaje, ale žiadne definitívne odpovede, je to často lepšia možnosť.
Ľudská chyba však často znižuje jeho presnosť. Lekári tradične manuálne kontrolujú pacientov jazyk. Dokonca aj s dlhoročnými skúsenosťami, čokoľvek od mierne sfarbených horných svetiel až po dennú dobu môže ovplyvniť ich vnímanie farieb. Táto nejednoznačná, subjektívna metóda existuje už viac ako 2 000 rokov – je čas na inováciu.
Profesionálni inžinieri a výskumníci, ktorí vyvinuli tento prelomový diagnostický zobrazovací systém, nechali účastníkov stáť 20 centimetrov od stroja počas jeho testovacej fázy. Vstavaná AI potom zistila farbu ich jazyka a predpovedala ich zdravotný stav v reálnom čase. Spracoval odtiene a jas pomocou modelov farebného priestoru.
Algoritmus XGBoost správne predpovedal choroby
Kužeľové bunky - fotoreceptory v sietnici zodpovedné za farebné videnie - sú široko citlivé na červeno-modro-zelené (RGB) oblasti. Tento model farebného priestoru však neodráža informácie veľmi dobre. Systém počítačového videnia namiesto toho používal YCbCr, LAB, YIQ a HSV. Na rozdiel od ľudí nie je obmedzený na úzke spektrum viditeľného svetla.
Iné štúdie ukazujú, že systém počítačového videnia poháňaný AI dokáže presne rozpoznať a znovu vytvoriť farby bez spektrálnej disperzie, čo znamená, že dokáže definitívne vidieť farby, ktoré my nevidíme. Zatiaľ čo moje RGB-citlivé kužele môžu len
Ak model strojového učenia dokáže zachytiť jemné rozdiely v sýtosti a jase, ktoré sú pre mňa neviditeľné, prečo by nemohol vidieť odtiene, ktoré ja nevidím? Prirodzene, dôsledky sú závažné – AI môže byť schopná neustále prekonávať lekárov.
Keďže jeden model môže komunikovať s viacerými ľuďmi súčasne, môže pomôcť rôznym pacientom naraz. Nepotrebujú navštíviť kliniku – môžu si stiahnuť aplikáciu a použiť fotoaparát svojho telefónu. Keďže stroj výskumnej skupiny dokáže identifikovať a predpovedať choroby bez ohľadu na osvetlenie, existuje len malá šanca na nepresný výstup.
Domnievam sa, že skríning riadený umelou inteligenciou doma by mohol spôsobiť revolúciu v zdravotnej starostlivosti, ktorá by bola dostupnejšia a dostupnejšia. Milióny ľudí ročne zomierajú na choroby, proti ktorým by mali šancu bojovať, keby ich chytili skôr. Napríklad v Spojených štátoch okolo
Potenciál AI priniesť revolúciu v diagnostike by mohol byť prínosom pre nemocnice rovnako ako pre pacientov. Napriek rozsiahlej digitalizácii výdavky na medicínu
Možnosti automatizácie a autonómna povaha AI by mohli zefektívniť stretnutia. Dôkazy ukazujú, že táto technológia môže pomôcť zdravotníckym zariadeniam
Nemyslel som si, že používanie farieb jazyka na diagnostiku môže byť také účinné, ale má jedinečný potenciál. Môže AI nahradiť lekárov? Pravdepodobne nie. Verím však, že sa stane základom v lekárskom priemysle, pretože dopĺňa identifikáciu, predikciu a liečbu chorôb. Ich odbornosť v kombinácii so silou strojového učenia by bola neprekonateľnou dvojicou.
Zdravotnícky priemysel si je vedomý umelej inteligencie a túži ju prijať, takže je pravdepodobne len otázkou času, kedy sa stane rozšírenou. Odborníci predpokladajú, že trhová hodnota tejto technológie v tomto sektore porastie o a
Avšak zatiaľ čo __ 72 % lekárov súhlasí , __najsľubnejšie vidia AI v diagnostike, v praxi ju používa iba 38 %. V skutočnosti to môže trvať roky, kým použijú farby jazyka analyzované na modeli na diagnostiku a predpovedanie. Môj vzdelaný odhad je, že nemocniciam bude trvať desať rokov, kým preskočia obruče namiesto preseknutia byrokracie.
Našťastie svet mobilného zdravia rýchlo rastie a je dostupný kedykoľvek. Aj keď nemôžem spomenúť mHealth bez toho, aby som poukázal na nedostatok regulačného dohľadu a ochrany súkromia, bolo by tiež nezmyselné ho prehliadať pri diskusii o budúcnosti lekárskej AI.
V určitom momente som sa pristihla pri myšlienke, že tento prielom je príliš dobrý na to, aby to bola pravda. v čom je háčik? Aké sú nevýhody diagnostiky AI? Urobil som si svoj spravodlivý podiel na prieskume v tejto oblasti, takže som vedel, že budú existovať otázky týkajúce sa súkromia, etiky a regulácie. Štúdia, ktorá odhalila túto prelomovú technológiu, však tiež stojí za prehodnotenie pod mikroskopom.
Všimol som si, že práca výskumníkov na používaní AI na analýzu farieb jazyka na diagnostiku ešte nebola recenzovaná. Keďže to bolo zverejnené v júni 2024, nie je to prekvapujúce. To však znamená
Použitie zobrazovacieho systému na analýzu farieb jazyka na diagnostiku sa môže zdať ako výklenok a relatívne malý úspech, ale môže spôsobiť revolúciu v zdravotnej starostlivosti. Presné predpovedanie chorôb prostredníctvom aplikácie by mohlo zachrániť tisíce životov. Okrem toho by iní výskumníci mohli použiť túto technológiu na inšpiráciu svojich vlastných diagnostických objavov založených na AI.