paint-brush
Two Microlensing Planets through Planetary-Caustic Channel: Referencesby@exoplanetology
125 reads

Two Microlensing Planets through Planetary-Caustic Channel: References

Too Long; Didn't Read

In this paper, researchers analyze microlensing events OGLE-2018-BLG-0567 and OGLE-2018-BLG-0962, revealing planetary companions to the hosts.
featured image - Two Microlensing Planets through Planetary-Caustic Channel: References
Exoplanetology Tech: Research on the Study of Planets HackerNoon profile picture

Authors:

(1) Youn Kil Jung, Korea Astronomy and Space Science Institute, University of Science and Technology, and The KMTNet Collaboration;

(2) Cheongho Han, Department of Physics, Chungbuk National University and The KMTNet Collaboration;

(3) Andrzej Udalski, Warsaw University Observatory and The OGLE Collaboration;

(4) Andrew Gould, Korea Astronomy and Space Science Institute, Department of Astronomy, Ohio State University, Max-Planck-Institute for Astronomy and The KMTNet Collaboration;

(5) Jennifer C. Yee, Center for Astrophysics | Harvard & Smithsonian and The KMTNet Collaboration;

(6) Michael D. Albrow, University of Canterbury, Department of Physics and Astronomy;

(7) Sun-Ju Chung, Korea Astronomy and Space Science Institute and University of Science and Technology;

(8) Kyu-Ha Hwang, Korea Astronomy and Space Science Institute;

(9) Yoon-Hyun Ryu, Korea Astronomy and Space Science Institute;

(10) In-Gu Shin, Korea Astronomy and Space Science Institute;

(11) Yossi Shvartzvald, Department of Particle Physics and Astrophysics, Weizmann Institute of Science;

(12) Wei Zhu, Canadian Institute for Theoretical Astrophysics, University of Toronto;

(13) Weicheng Zang, Department of Astronomy, Tsinghua University;

(14) Sang-Mok Cha, Korea Astronomy and Space Science Institute and 2School of Space Research, Kyung Hee University;

(15) Dong-Jin Kim, Korea Astronomy and Space Science Institute;

(16) Hyoun-Woo Kim, Korea Astronomy and Space Science Institute;

(17) Seung-Lee Kim, Korea Astronomy and Space Science Institute and University of Science and Technology;

(18) Chung-Uk Lee, Korea Astronomy and Space Science Institute and University of Science and Technology;

(19) Dong-Joo Lee, Korea Astronomy and Space Science Institute;

(20) Yongseok Lee, Korea Astronomy and Space Science Institute and School of Space Research, Kyung Hee University;

(21) Byeong-Gon Park, Korea Astronomy and Space Science Institute and University of Science and Technology;

(22) Richard W. Pogge, Department of Astronomy, Ohio State University;

(23) Przemek Mroz, Warsaw University Observatory and Division of Physics, Mathematics, and Astronomy, California Institute of Technology;

(24) Michal K. Szymanski, Warsaw University Observatory;

(25) Jan Skowron, Warsaw University Observatory;

(26) Radek Poleski, Warsaw University Observatory and Department of Astronomy, Ohio State University;

(27) Igor Soszynski, Warsaw University Observatory;

(28) Pawel Pietrukowicz, Warsaw University Observatory;

(29) Szymon Kozlowski, Warsaw University Observatory;

(30) Krzystof Ulaczyk, Department of Physics, University of Warwick, Gibbet;

(31) Krzysztof A. Rybicki, Warsaw University Observatory;

(32) Patryk Iwanek, Warsaw University Observatory;

(33) Marcin Wrona, Warsaw University Observatory.

REFERENCES

Alard, C., & Lupton, Robert H. 1998, ApJ, 503, 325


Alcock, C., Allsman, R. A., Axelrod, T. S., et al. 1995, ApJ, 445, 133


Albrow, M. D. 2017, MichaelDAlbrow/pyDIA: Initial release on github, V1.0.0, Zenodo, doi:10.5281/zenodo.268049


Albrow, M. D., Horne, K., Bramich, D. M., et al. 2009, MNRAS, 397, 2099


Beaulieu, J.-P., Bennett, D. P., Fouqu´e, P., et al. 2006, Nature, 439, 437


Bennett, D.P., Rhie, S.H., Nikolaev, S. et al. 2010, ApJ, 713, 837


Bennett, D. P., Sumi, T., Bond, I. A., et al. 2012, ApJ, 757, 119


Bensby, T., Yee, J. C., Feltzing, S., et al. 2013, A&A, 549, 147


Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134


Bond, I. A., Abe, F., Dodd, R. J. 2001, MNRAS, 327, 868


Bond, I.A., Udalski, A., Jaroszy´nski, M. et al. 2004, ApJ, 606, L155


Dominik, M. 1998, A&A, 329, 361


Dominik, M. 1999, A&A, 349, 108


Dong, S., Gould, A., Udalski, A. et al. 2009, ApJ, 695, 970


Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, 1


Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1


Gaudi, B.S. 1998, ApJ, 506, 533


Gaudi, B. S. 2012, ARA&A, 50, 411


Gaudi, B.S., Bennett, D.P., Udalski, A. et al. 2008, Science, 319, 927


Gould, A. 1992, ApJ, 392, 442


Gould, A. 1997, in Variables Stars and the Astrophysical Returns of the Microlensing Surveys, ed. R. Ferlet, J.-P. Maillard, & B. Raban (Gif-sur-Yvette, France: Editions Frontieres), 125


Gould, A. 2000, ApJ, 542, 785


Gould, A. & Gaucherel, C. 1997, ApJ, 477, 580


Gould, A., & Loeb, A. 1992, ApJ, 396, 104


Gould, A., Dong, S., Gaudi, B. S., et al. 2010, ApJ, 720, 1073


Gould, A., Udalski, A., Shin, I.-G. et al. 2014, Science, 345, 46


Griest, K., & Safizadeh, N. 1998, ApJ, 500, 37


Han, C., & Gould, A. 1995, ApJ, 447, 53


Han, C., & Gould, A. 2003, ApJ, 592, 172


Han, C., Udalski, A., Gould, A., et al. 2017, AJ, 154, 133


Han, C., Udalski, A., Gould, A., et al. 2020, AJ, 159, 91


Holtzman, J. A., Watson, A. M., Baum, W. A., et al. 1998, AJ, 115, 1946


Hwang, K.-H., Ryu, Y.-H., Kim, H.-W., et al. 2019, AJ, 157, 23


Hwang, K.-H., Udalski, A., Shvartzvald, Y., et al. 2018, AJ, 155, 20


Ida, S., & Lin, D. N. C. 2004, ApJ, 616, 567


Jung, Y. K., Gould, A., Udalski, A, et al. 2019, AJ, 158, 28


Jung, Y. K., Udalski, A., Gould, A., et al. 2018, AJ, 155, 219


Jung, Y. K., Udalski, A., Sumi, T., et al. 2015, ApJ, 798, 123


Jung, Y. K., Udalski, A., Yee, J. C., et al. 2017, AJ, 153, 129


Han, C. 2006, ApJ, 638, 1080


Kayser, R., Refsdal S., & Stabell, R. 1986, A&A, 166, 36


Kennedy, G. M., & Kenyon, S. J. 2008, ApJ, 673, 502


Kervella, P., Bersier, D., Mourard, D., et al. 2004a, A&A, 428, 587


Kervella, P., Th´evenin, F., Di Folco, E., & S´egransan, D. 2004b, A&A, 426, 297


Kim, D.-J., Kim, H.-W., Hwang, K.-H., et al. 2018, AJ, 155, 76


Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, JKAS, 49, 37


Nataf, D. M., Gould, A., Fouqu´e, P., et al. 2013, ApJ, 769, 88


Paczy´nski, B. 1986, ApJ, 304, 1


Pecaut, M. J., & Mamajek, E. E. 2013, ApJS, 208, 9


Poleski, R., Skowron, J., Udalski, A., et al. 2014, ApJ, 795, 42


Poleski, R., Suzuki, D., Udalski, A., et al. 2020, AJ, 159, 261


Poleski, R., Udalski, A., Bond, I. A., et al. 2017, A&A, 604A, 103


Rattenbury, N. J., Bennett, D. P., Sumi, T., et al. 2015, MNRAS, 454, 946


Rhie, S. H., Bennett, D. P., Becker, A. C., et al. 2000, ApJ, 533, 378


Robin, A. C., Reyl´e, C., Derri´ere, S., & Picaud, S. 2003, A&A, 409, 523


Schneider, P., & Weiss, A. 1986, A&A, 164, 237


Schneider, P., & Weiss, A. 1987, A&A, 171, 49


Skowron, J., Udalski, A., Poleski, R., et al. 2016, ApJ, 820, 4


Skowron, J., Ryu, Y.-H., Hwang, K.-H., et al. 2018, AcA, 68, 43


Sumi, T., Bennett, D. P., Bond, I. A., et al. 2013, ApJ, 778, 150


Sumi, T., Udalski, A., Bennett, D. P., et al. 2016, ApJ, 825, 112


Suzuki, D., Bennett, D. P., Udalski, A., et al. 2018, AJ, 155, 263


Szyma´nski, M. K., Udalski, A., Soszy´nski, I., et al. 2011, AcA, 61, 83


Tomaney, A.B. & Crotts, A.P.S. 1996, AJ, 112, 2872


Udalski, A. 2003, Acta Astron., 53, 291


Udalski, A., Szyma´nski, M., Ka lu˙zny, J., Kubiak, M., & Mateo, M. 1992, AcA, 42, 253


Udalski, A., Szyma´nski, M. K., & Szyma´nski, G. 2015, AcA, 65, 1


Udalski, A., Jaroszy´nski, M., Paczy´nski, B., et al. 2005, ApJ, 628, L109


Wo´zniak, P. R. 2000, AcA, 50, 42


Yee, J. C., Shvartzvald, Y., Gal-Yam, A., et al. 2012, ApJ, 755, 102


Yee, J. C., Zang, W., Udalski, A., et al. 2021, arXiv:2101.04696


Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, ApJ, 603, 139


Table 1. Lensing Parameters


Table 2. Binary Source Model for OGLE-2018-BLG-0567


Table 3. Source Star and Lens Properties


Table 4. Physical Parameters


Fig. 1.— Light curve of OGLE-2018-BLG-0567. The black solid curve on the data is the best-fit 2L1S solution. The upper panel shows the enlarged view of the planet-induced anomaly centered on HJD′ ∼ 8270. The second and fourth panels show the residuals from the solution. The lensing parameters of the solution are listed in Table 1 and the caustic geometry is shown in Figure 3.


Fig. 2.— Light curve of OGLE-2018-BLG-0962. The upper panels show the close-up views of the regions around HJD′ ∼ 8271.5 (left) and HJD′ ∼ 8273.8 (right) when the planet-induced perturbations occur. The lensing parameters of the 2L1S solution are listed in Table 1 and the caustic geometry is shown in Figure 4.


Fig. 3.— Caustic geometry of OGLE-2018-BLG-0567. The line with an arrow is the source trajectory relative to the binary axis. The open circles (scaled by the normalized source radius ρ) on the trajectory are the source positions at the times of observations. The two orange circles are the positions of binary-lens masses (M1 and M2). In each panel, the cuspyclosed curve drawn in black color represents the caustic. The upper panel shows the enlarged view of the planetary caustic. Lengths are scaled to the angular Einstein radius of the lens system.


Fig. 4.— Caustic geometry of OGLE-2018-BLG-0962. Notations are identical to those of Figure 3.


Fig. 5.— Light curve of the 1L2S model for OGLE-2018-BLG-0567. The dashed gray and solid black lines are the best-fit models from the 1L2S and 2L1S interpretations, respectively. The lower two panels show the residuals from the two models.


Fig. 6.— Color-magnitude diagrams of OGLE-2018-BLG-0567 (upper panel) and OGLE2018-BLG-0962 (lower panel). In each panel, the CMD is constructed using stars in the 2 ′ × 2 ′ field centered on the event location based on KMTNet pyDIA photometry calibrated to the OGLE-III catalog (Szyma´nski et al. 2011). The blue and red circles are the positions of source and red clump centroid, respectively.


Fig. 7.— Posterior distributions of M1 (left panels) and DL (right panels) for the individual events. In each panel, the red and blue distributions are, respectively, the contributions by the bulge and disk lens populations. The black distribution is the total contribution of the two lens populations. The median value and its 68% confidence interval are represented by the vertical solid and two dotted lines, respectively.


Fig. 8.— Microlensing planets in the (log s, log q) plane, adapted from Figure 9 of Yee et al. (2021). Planets (except for our two planets) are colored by the number of solutions: black for one solution and red (with connected line) for degenerate solutions. The two planets OGLE-BLG-2018-BLG-0567Lb and OGLE-2018-BLG-0962Lb are coded by yellow and blue colors, respectively. Their shapes indicate the caustic structure giving rise to the planetary perturbation: circles for resonant/near-resonant, squares for central, and triangles for planetary caustics. The filled triangles are the planets from the Hollywood events. The two green solid and dashed lines are the boundary of resonant and near-resonant caustics, respectively. We note that for compactness, we compress the planet names, e.g., OGLE-2018-BLG-0567Lb to OB180567.


This paper is available on arxiv under CC0 1.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

Exoplanetology Tech: Research on the Study of Planets HackerNoon profile picture
Exoplanetology Tech: Research on the Study of Planets@exoplanetology
What's out there? Aliens, water, or just a big empty nothingness? Monumental research about the vastness of our cosmos.

TOPICS

Languages

THIS ARTICLE WAS FEATURED IN...