In this tutorial, we’ll walk you through a step-by-step process of building an AI-powered Investment & Savings Copilot that helps you plan your savings and investments using
Here’s what we’ll cover:
Building up a Next.js project for the AI Investment & Savings Copilot.
Adding CopilotKit UI components and API endpoints to your app.
Integrating Maybe Finance API to provide personalized investment and savings insights.
Here’s a preview of the AI-Powered Finance App implementation:
Let’s get started!
This lets you define your copilot’s role without dealing with complex setups or integrations.
Check out CopilotKit's GitHub ⭐️
In our project, we’ll tap into Maybe Finance’s real-time data and analytics to power our copilot’s insights—helping users optimize their savings and investments.
Before we begin, make sure you have:
Technical Knowledge
Intermediate understanding of Next.js and React
Basic knowledge of TypeScript
Familiarity with MongoDB
Required Accounts
MongoDB Atlas for database hosting
Google Cloud Platform account for OAuth authentication
Development Environment
Node.js 18+ and npm
Code editor (VS Code recommended)
Once you get this sorted, we’ll start development! 🚀
This is the web application we will be building.
Open your terminal and run this command to create a new Next.js project
npx create-next-app@latest finance_ai --typescript
Navigate to the project directory and start the development server:
cd finance_ai
npm run dev
Your app should now be running at
Next, let’s install the necessary dependencies for this project. These include:
CopilotKit Packages.
Axios ( to fetch the API)
Shadcn/ui (for pre-built UI components)
Recharts (for chart representation)
Run the following command to install them:
npm install @copilotkit/react-ui @copilotkit/react-core axios
Then, for Shadcn UI, run this command
npx shadcn@latest add button card input label badge tabs
Note: If you are using CopilotKit Cloud, you don’t need to include the runtime package, as the CopilotKit Cloud automatically manages the runtime environment. However, if you are self-hosting the backend, you may need to handle runtime configurations manually. In this tutorial, we will focus on self-hosting, but keep in mind that CopilotKit Cloud is an option that simplifies runtime management.
Now, let’s set up the project structure. The key files and directories we’ll create include:
src/app/ui/service/index.ts
– Handles API calls to fetch financial data.
src/app/ui/components/FinanceCopilot.tsx
– The main UI component for our AI-powered financial assistant.
src/app/lib/types/investment.ts
– Defines TypeScript types for investment and savings data.
src/app/lib/data/mockData.ts
– Contains financial data for testing.
src/app/api/copilotkit/route.ts
– The API endpoint for CopilotKit.
src/app/api/finance/route.ts
– An API for fetching financial insights.
Project Structure
Below is the file tree for our application:
layout.tsx
First, go to
Then, copy your API key and save it in your .env
file. Then, update your global layout to wrap your app with the CopilotKit provider. This makes the copilot functionality available throughout your application.
Now that it is set, enter the code below in this directory finance_ai/app/layout.tsx
import { Metadata } from "next";
import { Geist, Geist_Mono } from "next/font/google";
import "./globals.css";
import { CopilotKit } from "@copilotkit/react-core";
import "@copilotkit/react-ui/styles.css";
// Load fonts for styling
const geistSans = Geist({
variable: "--font-geist-sans",
subsets: ["latin"],
});
const geistMono = Geist_Mono({
variable: "--font-geist-mono",
subsets: ["latin"],
});
// Metadata for SEO and display
export const metadata: Metadata = {
title: "Coyamin - AI Investment Copilot",
description: "Make informed financial decisions with AI-powered insights.",
};
// Retrieve the Copilot API key from environment variables
const copilotApiKey = process.env.NEXT_PUBLIC_COPILOTKIT_API_KEY;
export default function RootLayout({
children,
}: Readonly<{ children: React.ReactNode }>) {
return (
<html lang="en">
<body className={`${geistSans.variable} ${geistMono.variable} antialiased`}>
{/* Conditionally wrap with CopilotKit if the API key is available */}
{copilotApiKey ? (
<CopilotKit publicApiKey={copilotApiKey}>{children}</CopilotKit>
) : (
<>{children}</>
)}
</body>
</html>
);
}
In the code above, we start by importing global styles and fonts, ensuring a consistent design throughout the application.
Next, we wrap the app with the CopilotKit
provider to use the API key; <CopilotKitProvider apiKey={process.env.NEXT_PUBLIC_COPILOTKIT_API_KEY}><App /> </CopilotKitProvider>
This setup makes AI functionality accessible across all components in the application.
To create a login form component, enter this code in app/api/auth/[...nextauth]/route.ts
:
import NextAuth from "next-auth";
import GoogleProvider from "next-auth/providers/google";
import { PrismaAdapter } from "@auth/prisma-adapter";
import { prisma } from "@/lib/db";
export const authOptions = {
adapter: PrismaAdapter(prisma),
providers: [
GoogleProvider({
clientId: process.env.GOOGLE_CLIENT_ID as string,
clientSecret: process.env.GOOGLE_CLIENT_SECRET as string,
}),
],
callbacks: {
async session({ session, user }) {
if (session?.user) {
session.user.id = user.id;
session.user.isOnboarded = user.isOnboarded;
}
return session;
},
},
pages: {
signIn: "/",
},
};
const handler = NextAuth(authOptions);
export { handler as GET, handler as POST };
The authentication page is split into two tabs: Login and Sign Up. Each form uses labeled input fields and a button that redirects to the onboarding page upon successful authentication.
The onboarding page has a chat interface that asks questions such as financial goals, risk tolerance, and investment preferences as part of the onboarding process.
In the app/onboarding
directory, create a page.tsx
file and enter this code:
"use client"
import { useState, useEffect } from "react"
import { useRouter } from "next/navigation"
import { Button } from "@/components/ui/button"
import { Card, CardContent } from "@/components/ui/card"
import { Badge } from "@/components/ui/badge"
import { ArrowRight, Bot, User, Sparkles } from "lucide-react"
interface Message {
type: "bot" | "user"
content: string
options?: string[]
}
export default function OnboardingChat() {
const router = useRouter()
const [messages, setMessages] = useState<Message[]>([
{
type: "bot",
content: "Welcome to Coyamin! I'm your AI Investment & Savings Copilot. Let's set up your financial profile. What are your main financial goals?",
options: [
"Short-term savings (1-2 years)",
"Long-term investments (5+ years)",
"Retirement planning",
"Emergency fund",
"Wealth building",
],
},
])
const [currentStep, setCurrentStep] = useState(0)
const [selectedOptions, setSelectedOptions] = useState<Record<number, string[]>>({})
Here, we import the Shadcn UI button, card, and badge components and also add state management with import { useState, useEffect } from "react".
We also include an OnboardingChat()
function with a message to welcome the user and ask about their financial goals, which they can select from the options as shown below:
Handling User Selection and Chat Flow
When you select an option, the chatbot responds dynamically and progresses through different stages of onboarding. We also include a dropdown that explains each risk tolerance level:
// Define the steps of the onboarding process
const steps = [
{ title: "Financial Goals", progress: 33 },
{ title: "Risk Tolerance", progress: 66 },
{ title: "Investment Preferences", progress: 100 },
];
const handleOptionSelect = (option: string) => {
setMessages((prev) => [...prev, { type: "user", content: option }]);
setSelectedOptions((prev) => ({
...prev,
[currentStep]: [...(prev[currentStep] || []), option],
}));
setTimeout(() => {
if (currentStep === 0) {
setMessages((prev) => [
...prev,
{
type: "bot",
content: "Great choice! Now, what's your risk tolerance level?",
options: ["Conservative (Low Risk)", "Moderate (Medium Risk)", "Aggressive (High Risk)"],
},
]);
setCurrentStep(1);
} else if (currentStep === 1) {
setMessages((prev) => [
...prev,
{
type: "bot",
content: "Perfect! Finally, which investment types interest you? (You can select multiple)",
options: ["Stocks", "ETFs", "Bonds", "Crypto", "Real Estate", "Mutual Funds"],
},
]);
setCurrentStep(2);
} else if (currentStep === 2) {
setMessages((prev) => [
...prev,
{
type: "bot",
content: "Thanks! I'll now create your personalized investment profile based on your preferences.",
},
]);
setTimeout(() => {
router.push("/dashboard");
}, 1500);
}
}, 500);
};
The dashboard displays the financial overview and AI-generated recommendations. Enter the code snippets below in app/dashboard/page.tsx
Integrating the dashboard wrapper with the CopilotKit Sidebar
This wraps the entire dashboard with theCopilotSidebar
component and sets up the main flex container for the dashboard content.
"use client"
import { CopilotSidebar } from "@copilotkit/react-ui";
export default function DashboardPage() {
return (
<CopilotSidebar
defaultOpen={true}
instructions="You are assisting the user as best as you can. Answer in the best way possible given the data you have."
labels={{
title: "Coyamin Assistant",
initial: "How can I help you today?",
}}
>
{/* Main container: fills the available viewport height */}
<div className="flex h-[calc(100vh-3.5rem)]">
<div className="flex-1 p-4 sm:p-6 lg:p-8 overflow-auto">
{/* Dashboard content goes here */}
</div>
</div>
</CopilotSidebar>
);
}
The CopilotSidebar
provides a persistent AI chat interface, while the flex container (div
with flex h-[calc(100vh-3.5rem)]
) ensures the dashboard occupies the full height of the viewport minus a header offset.
Also, the inner container ( <div className="flex-1 p-4 sm:p-6 lg:p-8 overflow-auto">
) is padded and scrollable, ready to hold our overview and chart components.
Implementing the Overview cards in the dashboard
The “Overview” section of the dashboard defines a grid of cards, each displaying a key financial metric such as Total Balance, Investments, Monthly Savings, and Risk Score.
Still in the page.tsx
file, enter the code below:
<div className="grid gap-4 sm:grid-cols-2 lg:grid-cols-4">
<Card>
<CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
<CardTitle className="text-sm font-medium">Total Balance</CardTitle>
</CardHeader>
<CardContent>
<div className="text-xl sm:text-2xl font-bold">$45,231.89</div>
<p className="text-xs sm:text-sm text-muted-foreground">+20.1% from last month</p>
</CardContent>
</Card>
<Card>
<CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
<CardTitle className="text-sm font-medium">Investments</CardTitle>
</CardHeader>
<CardContent>
<div className="text-xl sm:text-2xl font-bold">$32,123.45</div>
<p className="text-xs sm:text-sm text-muted-foreground">78 active positions</p>
</CardContent>
</Card>
<Card>
<CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
<CardTitle className="text-sm font-medium">Monthly Savings</CardTitle>
</CardHeader>
<CardContent>
<div className="text-xl sm:text-2xl font-bold">$2,400.00</div>
<p className="text-xs sm:text-sm text-muted-foreground">+12% from last month</p>
</CardContent>
</Card>
<Card>
<CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
<CardTitle className="text-sm font-medium">Risk Score</CardTitle>
</CardHeader>
<CardContent>
<div className="text-xl sm:text-2xl font-bold">7.2/10</div>
<p className="text-xs sm:text-sm text-muted-foreground">Moderate risk profile</p>
</CardContent>
</Card>
</div>
Each Card
is composed of a header (CardHeader
and CardTitle
) for the label and content (CardContent
) for the metric value and description. The grid layout (grid gap-4 sm:grid-cols-2 lg:grid-cols-4
) is to make sure that the cards are evenly spaced and responsive.
Adding the charts with Rechart
We use Recharts to create two types of charts in the application:a line chart for the portfolio overview and a pie chart for asset allocation. These charts are to visualize the financial trends and asset distribution clearly. For more details about Recharts, check out the
Run this command to install Recharts:
npm install recharts
And then add this code to the page.tsx
file in the dashboard directory:
import {
LineChart,
Line,
XAxis,
YAxis,
CartesianGrid,
Tooltip,
ResponsiveContainer,
PieChart,
Pie,
Cell,
} from "recharts";
const chartData = [
{ name: "Jan", value: 4000 },
{ name: "Feb", value: 3000 },
{ name: "Mar", value: 2000 },
{ name: "Apr", value: 2780 },
{ name: "May", value: 1890 },
{ name: "Jun", value: 2390 },
];
const pieData = [
{ name: "Stocks", value: 400 },
{ name: "Bonds", value: 300 },
{ name: "Real Estate", value: 300 },
{ name: "Crypto", value: 200 },
];
const COLORS = ["#0088FE", "#00C49F", "#FFBB28", "#FF8042"];
export default function ChartsSection() {
return (
<div className="grid gap-4 sm:grid-cols-1 md:grid-cols-2 lg:grid-cols-7 mt-4">
{/* Portfolio Overview - Line Chart */}
<div className="col-span-1 md:col-span-2 lg:col-span-4">
<div className="border rounded shadow p-4">
<h3 className="text-lg font-semibold mb-2">Portfolio Overview</h3>
<ResponsiveContainer width="100%" height="250px">
<LineChart data={chartData}>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="name" />
<YAxis />
<Tooltip />
<Line type="monotone" dataKey="value" stroke="#8884d8" />
</LineChart>
</ResponsiveContainer>
</div>
</div>
{/* Asset Allocation - Pie Chart */}
<div className="col-span-1 md:col-span-2 lg:col-span-3">
<div className="border rounded shadow p-4">
<h3 className="text-lg font-semibold mb-2">Asset Allocation</h3>
<ResponsiveContainer width="100%" height="250px">
<PieChart>
<Pie data={pieData} innerRadius={50} outerRadius={80} paddingAngle={5} dataKey="value">
{pieData.map((entry, index) => (
<Cell key={`cell-${index}`} fill={COLORS[index % COLORS.length]} />
))}
</Pie>
<Tooltip />
</PieChart>
</ResponsiveContainer>
</div>
</div>
</div>
);
}
In the code above, the Line Chart (Portfolio Overview) uses a ResponsiveContainer
to ensure the chart is fully responsive. The LineChart
component plots the data with a CartesianGrid
for visual reference, while the XAxis
and YAxis
provide labels for readability. Using Recharts in this modular way keeps the code clear and maintainable.
Then, update pages/index.tsx
to display the Dashboard in the main application.
import Dashboard from '../components/Dashboard';
export default function Home() {
return (
<main className="min-h-screen bg-gray-100 p-10">
<Dashboard />
</main>
);
}
CopilotKit Endpoint
In pages/api/copilotkit.ts
, set up the backend endpoint to process requests from the Copilot UI. This endpoint will forward requests to our AI engine (and interface with Maybe Finance):
import { NextApiRequest, NextApiResponse } from 'next';
import { copilotRuntimeNextJSAppRouterEndpoint } from '@copilotkit/runtime';
Now, let's integrate Maybe Finance with our Coyamin application. We'll create several API routes that act as secure intermediaries between our frontend and the Maybe Finance API.
First, set up environment variables to store our API credentials:
API_KEY=your_maybe_finance_api_key
BASE_URL=https://api.synthfinance.com
We will create a series of API routes that will serve as our financial data pipeline. Each route will handle a specific type of financial data:
Currency Information API
This fetches different currencies for any information needed during the chat. Create aroute.ts
file in the app/api/rates/live
directory:
import { NextResponse } from "next/server";
import axios from "axios";
const API_KEY = process.env.API_KEY;
const BASE_URL = process.env.BASE_URL;
export async function GET(req: Request) {
try {
const { searchParams } = new URL(req.url);
const to = searchParams.get("to");
if (!to) {
return NextResponse.json(
{ message: "Missing required query parameter: to" },
{ status: 400 }
);
}
const response = await axios.get(`${BASE_URL}/rates/live`, {
params: { to },
headers: {
Authorization: `Bearer ${API_KEY}`,
Accept: "application/json",
},
});
return NextResponse.json(response.data, { status: 200 });
} catch (error: unknown) {
if(error instanceof Error) {
return NextResponse.json(
{ message: "Error fetching live rates", error: error.message },
{ status: 500 }
);
}
return NextResponse.json(
{ message: "Error fetching live rates"},
{ status: 500 }
);
}
}
This endpoint allows you to see how currency values and investment opportunities have changed over time to make data-driven decisions.
Start your development server:
npm run dev
Open
Sign Up Page
Onboarding
The result is a fully functioning AI-Powered Finance App using CopilotKit:
To clone the project from __GitHub__and run it locally, open your terminal and run this command:
git clone https://github.com/Tabintel/finance_ai.git
Then runnpm install
to install all dependencies needed for the project and npm run dev
to run the web app.
In this guide, we walked through the process of building an AI-powered Investment & Savings Copilot using
While we’ve covered key features, this is just the beginning—CopilotKit enables countless AI-driven use cases, from personalized financial assistants to intelligent automation in fintech applications.
Check out the full source code on GitHub
Follow CopilotKit on