paint-brush
Studying Black Holes: Exploring the Physics of the Outward Flow of Energyby@magnetosphere
111 reads

Studying Black Holes: Exploring the Physics of the Outward Flow of Energy

tldt arrow

Too Long; Didn't Read

To investigate the mechanism driving the turbulence, we explore the physics of the outward flow of energy.
featured image - Studying Black Holes: Exploring the Physics of the Outward Flow of Energy
Magnetosphere: maintaining habitability on Earth HackerNoon profile picture
0-item

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Hyerin Cho (조혜린), Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA and Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA;

(2) Ben S. Prather, CCS-2, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA;

(3) Ramesh Narayan, enter for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA and Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA;

(4) Priyamvada Natarajan, Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA, Department of Astronomy, Yale University, Kline Tower, 266 Whitney Avenue, New Haven, CT 06511, USA and Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA;

(5) Kung-Yi Su, Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA and Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA;

(6) Angelo Ricarte, Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA and Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA;

(7) Koushik Chatterjee, Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA and Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA.

Abstract and Introduction

Numerical Methods

Hydrodynamic Bondi Accretion

Magnetized Bondi Accretion

Feedback Via Reconnection-Driven Convection

Summary and Conclusions

Acknowledgements


Appendix

A. GRMHD Primer and Definitions

B. Numerical Set-up

C. Resolution and Initial Condition Study


References

5. FEEDBACK VIA RECONNECTION-DRIVEN CONVECTION






This paper is available on Arxiv under CC 4.0 license.