paint-brush
π Earth: a 3.14-day Earth-sized Planet from K2's Kitchen Served Warm: Future Prospects & Referencesby@escholar
107 reads

π Earth: a 3.14-day Earth-sized Planet from K2's Kitchen Served Warm: Future Prospects & References

Too Long; Didn't Read

featured image - π Earth: a 3.14-day Earth-sized Planet from K2's Kitchen Served Warm: Future Prospects & References
EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Prajwal Niraula, Department of Earth, Atmospheric and Planetary Sciences;

(2) Julien de Wit, Department of Earth, Atmospheric and Planetary Sciences;

(3) Benjamin V. Rackham, Department of Earth, Atmospheric and Planetary Sciences;

(4) Elsa Ducrot, Astrobiology Research Unit, University of Li`ege;

(5) Artem Burdanov, Department of Earth, Atmospheric and Planetary Sciences;

(6) Ian J. M. Crossfield, Kansas University Department of Physics and Astronomy;

(7) Valerie Van Grootel´, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(8) Catriona Murray, 5Cavendish Laboratory;

(9) Lionel J. Garcia, Astrobiology Research Unit, University of Li`ege;

(10) Roi Alonso, Instituto de Astrof´ısica de Canarias & Dpto. de Astrof´ısica, Universidad de La Laguna;

(11) Corey Beard, Department of Physics & Astronomy, The University of California;

(12) Yilen Gomez Maqueo Chew, Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ciudad Universitaria;

(13) Laetitia Delrez, Astrobiology Research Unit, University of Li`ege, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege & 0Observatoire de lUniversit´e de Gen`eve;

(14) Brice-Olivier Demory, University of Bern, Center for Space and Habitability;

(15) Benjamin J. Fulton, NASA Exoplanet Science Institute/Caltech-IPAC;

(16) Michael Gillon, Astrobiology Research Unit, University of Li`ege;

(17) Maximilian N. Gunther, Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology;

(18) Andrew W. Howard, California Institute of Technology;

(19) Howard Issacson, Department of Astronomy, University of California Berkeley;

(20) Emmanuel Jehin, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(21) Peter P. Pedersen, Cavendish Laboratory;

(22) Francisco J. Pozuelos, Astrobiology Research Unit, University of Li`ege & Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(23) Didier Queloz, Cavendish Laboratory;

(24) Rafael Rebolo-Lopez, Instituto de Astrof´ısica de Canarias & Dpto. de Astrof´ısica, Universidad de La Laguna';

(25) Sairam Lalitha, School of Physics & Astronomy, University of Birmingham;

(26) Daniel Sebastian, Astrobiology Research Unit, University of Li`ege

(27) Samantha Thompson, Cavendish Laboratory;

(28) Amaury H.M.J. Triaud, School of Physics & Astronomy, University of Birmingham.

Table of Links

Abstract & Introduction

Observation

Analysis and Validation

Future Prospects & References

4. FUTURE PROSPECTS


The search for transiting planets around small stars has been motivated in large part by their potential for atmospheric characterization. Owing to the size and proximity of its host, K2-315b is thus one of the few known terrestrial exoplanets possibly amenable for atmospheric characterization in the next two decades. In order to quantify and contextualize its prospects for atmospheric study, we followed the same approach as for TRAPPIST-1 in Gillon et al. (2016) (see de Wit & Seager 2013), focusing here on all known terrestrial planets. We selected terrestrial planets as planets with a reported radius below 1.6 R⊕ in the NASA Exoplanet Archive[4] (Rogers 2015; Fulton et al. 2017). We thus derive the amplitude of the planets’ signals in transmission as:



where Rp is the planetary radius, R∗ is the stellar radius, and heff is the effective atmospheric height, µ is the atmospheric mean molecular mass, T is the atmospheric temperature and g is the local gravity. We assume heff to cover seven atmospheric scale heights, µ the atmospheric mean molecular mass to be 20 amu, and the atmospheric temperature to be the equilibrium temperature for a Bond albedo of 0. For the planets with missing masses, we estimated g using the model of Chen & Kipping (2017).


Figure 7. Most promising terrestrial planets for atmospheric characterization. Point colors illustrate the SNR of a JWST/NIRSPEC observation relative to TRAPPIST-1 b. SNR below 1/100th of TRAPPIST-1b and transmission signal less than 5 ppm have been removed to enhance readability of the figure. The planets for which the presence of an atmosphere could be assessed by JWST within ∼ 50 transits are encircled in black, if their atmospheric signals are above JWST’s threshold of ∼50 ppm. The rest of the uncircled pool of terrestrial planets may be accessible with the successors of JWST if ten times better performance can be achieved. The size of the circle is proportional to the size of the planet. Circles for 1.5 R⊕ and 1.0 R⊕ are drawn in the upper right corner for reference.


The signal amplitudes are reported in Figure 7 together with the SNR relative to TRAPPIST-1 b’s, calculated by scaling the signal amplitude with the hosts’ brightness in J band. We find that K2-315b fares closely to the outer planets of TRAPPIST-1 in terms of potential for atmospheric exploration with JWST— its warmer and thus larger atmosphere compensating for its larger star. In fact, its relative SNR for transmission spectroscopy is half those of TRAPPIST-1 f–h, meaning that assessing the presence of a µ ∼ 20 atmosphere around the planet would require of the order of 40 transits—four times the ∼10 transits required for a similar assessment for TRAPPIST-1 f–h (Lustig-Yaeger et al. 2019). K2-315b is thus at the very edge of JWST’s capability for atmospheric characterization, mostly due to its “large” host star. The derivation above allows us to rank planets in terms of relative potential for atmospheric characterization, assuming a similar atmospheric scenario. In practice, a significant difference in atmospheric mean molecular mass, surface pressure, and/or cloud/haze altitude will strongly affect the actual potential of a planet for characterization (Lustig-Yaeger et al. 2019). For example, in some cases clouds could render the characterization of the favorable TRAPPIST-1 e difficult even with the generation of instruments following the JWST (i.e., LUVOIR, Pidhorodetska et al. 2020).


With an estimated radial velocity semi-amplitude of 1.3 m s−1 (assuming a mass comparable to that of Earth), the planet could be accessible for mass measurements using modern ultra-precise radial velocity instruments. Such possibilities and a ranking amongst the 10 best-suited Earth-sized planets for atmospheric study, EPIC 249631677 b will therefore play an important role in the upcoming era of comparative exoplanetology for terrestrial worlds. It will surely be a prime target for the generation of observatories to follow JWST and bring the field fully into this new era.


Acknowledgments: This project makes use of publicly available K2 data. P.N. would like to acknowledge funding for Kerr Fellowship and Elliot Fellowship at MIT. J.d.W. and MIT gratefully acknowledge financial support from the Heising-Simons Foundation, Dr. and Mrs. Colin Masson and Dr. Peter A. Gilman for Artemis, the first telescope of the SPECULOOS network situated in Tenerife, Spain. B.V.R. thanks the Heising-Simons Foundation for support. V.V.G. is a F.R.S.-FNRS Research Associate. M.G. and E.J. are F.R.S.-FNRS Senior Research Associates. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127), and funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement Number 336480, from the ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from F.R.S-FNRS (Research Project ID T010920F), from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement n◦ 803193/BEBOP), and from a Leverhulme Trust Research Project Grant n◦ RPG-2018-418.


Facilities: Keck:I (HIRES), Kepler, MAST (HLSP, K2), SNO, SSO


Software: astropy (Astropy Collaboration et al. 2013, 2018), batman (Kreidberg 2015), emcee (Foreman-Mackey et al. 2013), isochrones (Morton 2015), prose (Garcia et al. in prep.), SPOCK (Sebastian et al. in prep.), transitleastsquares (Hippke & Heller 2019), w¯otan (Hippke et al. 2019)

REFERENCES

Allard, F., Homeier, D., & Freytag, B. 2012, Philosophical Transactions of the Royal Society of London Series A, 370, 2765, doi: 10.1098/rsta.2011.0269


Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068


Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f


Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71, doi: 10.1051/0004-6361/201322631


Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977, doi: 10.1126/science.1185402


Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125, doi: 10.1051/0004-6361/201322971


Burdanov, A., Delrez, L., Gillon, M., & Jehin, E. 2018, SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST, 130, doi: 10.1007/978-3-319-55333-7 130


Chen, J., & Kipping, D. 2017, ApJ, 834, 17, doi: 10.3847/1538-4357/834/1/17


Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102, doi: 10.3847/0004-637X/823/2/102


Christiansen, J. L., Crossfield, I. J. M., Barentsen, G., et al. 2018, AJ, 155, 57, doi: 10.3847/1538-3881/aa9be0


Chubak, C., Marcy, G., Fischer, D. A., et al. 2012, arXiv e-prints. https://arxiv.org/abs/1207.6212


Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog, II/246 Cutri et al., R. M. 2013, VizieR Online Data Catalog, II/328 de Wit, J., & Seager, S. 2013, Science, 342, 1473, doi: 10.1126/science.1245450


Delrez, L., Gillon, M., Queloz, D., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10700, Proc. SPIE, 107001I, doi: 10.1117/12.2312475


Dotter, A. 2016, ApJS, 222, 8, doi: 10.3847/0067-0049/222/1/8


Dressing, C. D., & Charbonneau, D. 2013, ApJ, 767, 95, doi: 10.1088/0004-637X/767/1/95


Esselstein, R., Aigrain, S., Vanderburg, A., et al. 2018, ApJ, 859, 167, doi: 10.3847/1538-4357/aac20e


Fernandes, C. S., Van Grootel, V., Salmon, S. J. A. J., et al. 2019, ApJ, 879, 94, doi: 10.3847/1538-4357/ab2333


Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601, doi: 10.1111/j.1365-2966.2009.14548.x


Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306, doi: 10.1086/670067


Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81, doi: 10.1088/0004-637X/766/2/81


Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109, doi: 10.3847/1538-3881/aa80eb


Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1, doi: 10.1051/0004-6361/201833051


Garcia, L. J., Gillon, M., & SPECULOOS. in prep. Gillon, M., Jehin, E., Fumel, A., Magain, P., & Queloz, D. 2013, in European Physical Journal Web of Conferences, Vol. 47, European Physical Journal Web of Conferences, 03001, doi: 10.1051/epjconf/20134703001


Gillon, M., Jehin, E., Lederer, S. M., et al. 2016, Nature, 533, 221, doi: 10.1038/nature17448


Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Nature, 542, 456, doi: 10.1038/nature21360


Gillon, M., Meadows, V., Agol, E., et al. 2020, arXiv e-prints, arXiv:2002.04798. https://arxiv.org/abs/2002.04798


Goldreich, P., & Soter, S. 1966, Icarus, 5, 375, doi: 10.1016/0019-1035(66)90051-0


G¨unther, M. N., Pozuelos, F. J., Dittmann, J. A., et al. 2019, Nature Astronomy, 3, 1099, doi: 10.1038/s41550-019-0845-5


G¨unther, M. N., Zhan, Z., Seager, S., et al. 2020, AJ, 159, 60, doi: 10.3847/1538-3881/ab5d3a


Hardegree-Ullman, K. K., Cushing, M. C., Muirhead, P. S., & Christiansen, J. L. 2019, AJ, 158, 75, doi: 10.3847/1538-3881/ab21d2


Hippke, M., David, T. J., Mulders, G. D., & Heller, R. 2019, AJ, 158, 143, doi: 10.3847/1538-3881/ab3984


Hippke, M., & Heller, R. 2019, A&A, 623, A39, doi: 10.1051/0004-6361/201834672


Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 721, 1467, doi: 10.1088/0004-637X/721/2/1467


Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 398, doi: 10.1086/676406


Huber, D., Bryson, S. T., Haas, M. R., et al. 2016, ApJS, 224, 2, doi: 10.3847/0067-0049/224/1/2


Ilin, E., Schmidt, S. J., Davenport, J. R. A., & Strassmeier, K. G. 2019, A&A, 622, A133, doi: 10.1051/0004-6361/201834400


Jao, W.-C., Henry, T. J., Gies, D. R., & Hambly, N. C. 2018, ApJL, 861, L11, doi: 10.3847/2041-8213/aacdf6


Jehin, E., Gillon, M., Queloz, D., et al. 2018, The Messenger, 174, 2, doi: 10.18727/0722-6691/5105


Kass, R. E., & Raftery, A. E. 1995, Journal of the American Statistical Association, 90, 773 Kipping, D. M. 2013, MNRAS, 435, 2152, doi: 10.1093/mnras/stt1435


Kolbl, R., Marcy, G. W., Isaacson, H., & Howard, A. W. 2015, AJ, 149, 18, doi: 10.1088/0004-6256/149/1/18


Kostov, V. B., Schlieder, J. E., Barclay, T., et al. 2019, AJ, 158, 32, doi: 10.3847/1538-3881/ab2459


Kreidberg, L. 2015, PASP, 127, 1161, doi: 10.1086/683602


Lasker, B. M., Sturch, C. R., McLean, B. J., et al. 1990, AJ, 99, 2019, doi: 10.1086/115483


Luger, R., Agol, E., Kruse, E., et al. 2016, AJ, 152, 100, doi: 10.3847/0004-6256/152/4/100


Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019, AJ, 158, 27, doi: 10.3847/1538-3881/ab21e0


Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63, doi: 10.3847/1538-4357/aaf3bc


Morris, S. L. 1985, ApJ, 295, 143, doi: 10.1086/163359


Morton, T. D. 2015, isochrones: Stellar model grid package. http://ascl.net/1503.010


Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 814, 130, doi: 10.1088/0004-637X/814/2/130


Murray, C. A., Delrez, L., Pedersen, P. P., et al. 2020, MNRAS, 495, 2446, doi: 10.1093/mnras/staa1283


Niraula, P., Redfield, S., de Wit, J., et al. 2018, arXiv e-prints, arXiv:1812.09227. https://arxiv.org/abs/1812.09227


Niraula, P., Redfield, S., Dai, F., et al. 2017, AJ, 154, 266, doi: 10.3847/1538-3881/aa957c


Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23, doi: 10.1051/aas:2000169


Patra, K. C., Winn, J. N., Holman, M. J., et al. 2017, AJ, 154, 4, doi: 10.3847/1538-3881/aa6d75


Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3, doi: 10.1088/0067-0049/192/1/3


Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4, doi: 10.1088/0067-0049/208/1/4


Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15, doi: 10.1088/0067-0049/220/1/15


Pidhorodetska, D., Fauchez, T., Villanueva, G., Domagal-Goldman, S., & Kopparapu, R. K. 2020, arXiv e-prints, arXiv:2001.01338. https://arxiv.org/abs/2001.01338


Quinn, S. N., Becker, J. C., Rodriguez, J. E., et al. 2019, AJ, 158, 177, doi: 10.3847/1538-3881/ab3f2b


Rabus, M., Lachaume, R., Jord´an, A., et al. 2019, MNRAS, 484, 2674, doi: 10.1093/mnras/sty3430


Reid, I. N., Brewer, C., Brucato, R. J., et al. 1991, PASP, 103, 661, doi: 10.1086/132866


Reiners, A., Joshi, N., & Goldman, B. 2012, AJ, 143, 93, doi: 10.1088/0004-6256/143/4/93


Rodriguez, D. 2016, Dr-Rodriguez/Kinematics-App: Stellar Kinematics V1.0, v1.0, Zenodo, doi: 10.5281/zenodo.192159


Rodriguez, J. E., Vanderburg, A., Eastman, J. D., et al. 2018, AJ, 155, 72, doi: 10.3847/1538-3881/aaa292


Rogers, L. A. 2015, ApJ, 801, 41, doi: 10.1088/0004-637X/801/1/41


Seager, S., & Mall´en-Ornelas, G. 2003, ApJ, 585, 1038, doi: 10.1086/346105


Sebastian, D., Gillon, M., & SPECULOOS. in prep. Stassun, K. G., & Torres, G. 2018, ApJ, 862, 61, doi: 10.3847/1538-4357/aacafc


Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138, doi: 10.3847/1538-3881/ab3467


Van Grootel, V., Fernandes, C. S., Gillon, M., et al. 2018, ApJ, 853, 30, doi: 10.3847/1538-4357/aaa023


Vanderburg, A., & Johnson, J. A. 2014, PASP, 126, 948, doi: 10.1086/678764


Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Nature, 526, 546, doi: 10.1038/nature15527


Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, in Proc. SPIE, Vol. 2198, Instrumentation in Astronomy VIII, ed. D. L. Crawford & E. R. Craine, 362


Winn, J. N. 2010, Exoplanet Transits and Occultations, ed. S. Seager, 55–77


Yee, S. W., Petigura, E. A., & von Braun, K. 2017, ArXiv e-prints. https://arxiv.org/abs/1701.00922




[4] https://exoplanetarchive.ipac.caltech.edu