paint-brush
Multiverse in Karch-Randall Braneworld: Acknowledgements and Referencesby@multiversetheory
110 reads

Multiverse in Karch-Randall Braneworld: Acknowledgements and References

tldt arrow

Too Long; Didn't Read

Wedge holography offers insights into multiverse scenarios, addressing information and grandfather paradoxes. By analyzing black hole dynamics and gravitational interactions, it provides a framework for understanding complex phenomena in theoretical physics.
featured image - Multiverse in Karch-Randall Braneworld: Acknowledgements and References
Multiverse Theory: as real as the movies make it out to be HackerNoon profile picture

Author(s):

(1) Gopal Yadav, Department of Physics, Indian Institute of Technology & Chennai Mathematical Institute.

Abstract & Introduction

Brief Review of Wedge Holography

Emerging Multiverse from Wedge Holography

Application to Information Paradox

Application to Grandfather Paradox

Conclusion

Acknowledgements and References

Acknowledgements

The author is supported by a Senior Research Fellowship (SRF) from the Council of Scientific and Industrial Research (CSIR), Govt. of India. It is my pleasure to thank Aalok Misra, who motivated me to work on the entanglement stuff, and for his blessings. We would also like to thank Juan Maldacena, Andreas Karch, Kostas Skenderis and Tadashi Takayanagi for very helpful discussions and comments. This research was also supported in part by the International Centre for Theoretical Sciences (ICTS) for the program “Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography” (code:ICTS/numstrings-2022/8). Various conferences/workshops; e.g., Mysteries of Universe-I (Institute Lecture Series) and Indian Strings Meeting 2021 at Indian Institute of Technology Roorkee, Roorkee, India; Applications of Quantum Information in QFT and Cosmology at the University of Lethbridge, Canada; Kavli Asian Winter School (KAWS) on Strings, Particles and Cosmology (Online) at International Centre for Theoretical Sciences (ICTS) Bangalore, India (code:ICTS/kaws2022/1); Reconstructing the Gravitational Hologram with Quantum Information at Galileo Galilei Institute for Theoretical Physics, Florence, Italy; Quantum Information in QFT and AdS/CFT-III at Indian Institute of Technology Hyderabad, India; helped me to learn about the information paradox and related stuff. I am very thankful to the speakers and organizers of these conferences because I learned about the subject from these conferences.

References

[1] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)].


[2] D.N. Page, Information in Black Hole Radiation, Phys.Rev.Lett. 71 (1993) 3743-3746 [arXiv:hep-th/9306083 [hep-th]].


[3] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113-1133 (1999) [arXiv:hep-th/9711200].


[4] Y. Ling et al, Reflected entropy in double holography, JHEP 02 (2022) 037 [arXiv:2109.09243].


[5] C. Krishnan, Critical Islands, JHEP 01 (2021) 179 [arXiv:2007.06551[hep-th]].


[6] E. Caceres, A. Kundu, Ayan K. Patra and S. Shashi, Page Curves and Bath Deformations [arXiv:2107.00022 [hep-th]].


[7] E. Caceres, A. Kundu, Ayan K. Patra and S. Shashi, Warped information and entanglement islands in AdS/WCFT, JHEP 07 (2021) 004 [arXiv:2012.05425 [hep-th]].


[8] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model, JHEP 05 (2021) 135 [arXiv:2103.15852[hep-th]].


[9] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Bath deformations, islands and holographic complexity, Phys. Rev. D 105 (2022) 066019 [arXiv:2112.06967[hep-th]].


[10] Q.L. Hu, D. Li, R.X. Miao and Y.Q. Zeng, AdS/BCFT and Island for curvature-squared gravity, [arXiv:2202.03304[hep-th]].


[11] Y. Ling, Y. Liu and Z. Y. Xian, Island in Charged Black Holes, JHEP 03 (2021) 251 [arXiv:2010.00037[hep-th]].


[12] H. Omiya and Z. Wei, Causal Structures and Nonlocality in Double Holography [arXiv:2107.01219[hep-th]].


[13] H. Geng, A. Karch, C.P. Pardavila, S. Raju and L. Randall, Entanglement Phase Structure of a Holographic BCFT in a Black Hole Background, [arXiv:2112.09132[hep-th]].


[14] M. Afrasiar, J.K. Basak, A. Chandra and G. Sengupta, Islands for Entanglement Negativity in Communicating Black Holes [arXiv:2205.07903[hep-th]].


[15] D. Basu, H. Parihar, V. Raj and G. Sengupta, Defect extremal surfaces for entanglement negativity [arXiv:2205.07905[hep-th]].


[16] Y. Liu, Z.Y. Xian, C. Peng and Y. Ling, Black holes Entangled by Radiation, [arXiv:2205.14596[hep-th]].


[17] Z. Li and R.Q. Yang, Upper bounds of holographic entanglement entropy growth rate for thermofield double states, [arXiv:2205.15154[hep-th]].


[18] F. Deng, Y.S. An and Y. Zhou, JT Gravity from Partial Reduction and Defect Extremal Surface, [arXiv:2206.09609[hep-th]].


[19] C.F. Uhlemann, Islands and Page curves in 4d from Type IIB, JHEP 08 (2021) 104 [arXiv:2105.00008[hep-th]].


[20] S. Demulder, A. Gnecchi, I. Lavdas and D. Lust, Island and Light Gravitons in type IIB String Theory, [arXiv:2204.03669[hep-th]].


[21] A. Karch, H. Sun and C.F. Uhlemann, Double holography in string theory, [arXiv:2206.11292[hep-th]].


[22] H. Geng, Y. Nomura and H. Y. Sun, Information paradox and its resolution in de Sitter holography, Phys.Rev.D 103 (2021) 12, 126004 [arXiv:2103.07477[hep-th]].


[23] G. Yadav and A. Misra, (“Swiss-Cheese”) Entanglement Entropy when Page-ing M Theory Dual of Thermal QCD above Tc at Intermediate Coupling, [arXiv:2207.04048[hep-th]].


[24] H. Geng, L. Randall and E. Swanson, BCFT in a Black Hole Background: An Analytical Holographic Model, JHEP 12 (2022) 056 [arXiv:2209.02074[hep-th]].


[25] M. Afrasiar, J. K. Basak, A. Chandra and G. Sengupta, Reflected Entropy for Communicating Black Holes I: Karch-Randall Braneworlds, [arXiv:2211.13246[hep-th]].


[26] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156].


[27] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132].


[28] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 143 [1908.10996].


[29] S. Ryu, T. Takayanagi, Holographic Derivation of Entanglement Entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001].


[30] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080[hep-th]].


[31] O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249].


[32] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438[hep-th]].


[33] H. Geng, A. Karch, C. P. Pardavila, S. Raju and L. Randall, Information Transfer with a Gravitating Bath, SciPost Phys. 10 (2021) 5, 103 [arXiv:2012.04671[hep-th]].


[34] H. Geng, A. Karch, C. P. Pardavila, S. Raju and L. Randall, Inconsistency of islands in theories with long-range gravity, JHEP 01 (2022) 182 [arXiv:2107.03390[hep-th]].


[35] R. X. Miao, Massless Entanglement Island in Wedge Holography, [arXiv:2212.07645[hep-th]].


[36] K. Ghosh and C. Krishnan, Dirichlet baths and the not-so-fine-grained Page curve, JHEP 08 (2021) 119 [arXiv:2103.17253[hep-th]].


[37] G. R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016].


[38] C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, [arXiv:2005.02993[hep-th]].


[39] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, Rev. Mod. Phys. 93, no.3, 035002 (2021) [arXiv:2006.06872 [hep-th]].


[40] C. Krishnan and V. Mohan, Interpreting the Bulk Page Curve: A Vestige of Locality on Holographic Screens, [arXiv:2112.13783[hep-th]].


[41] I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges, Phys. Rev. D 102, 126007 (2020) [arXiv:2007.06800[hep-th]].


[42] R. X. Miao, An exact construction of codimension two holography, JHEP 01 (2021) 150 [arXiv:2009.06263[hep-th]].


[43] S. Choudhury, S. Panda, Entangled de Sitter from Stringy Axionic Bell pair I: An analysis using Bunch Davies vacuum, Eur.Phys.J. C78 (2018) no.1, 52 [arXiv:1708.02265[hep-th]].


[44] S. Choudhury, S. Panda, Quantum entanglement in de Sitter space from Stringy Axion: An analysis using α vacua, Nucl. Physic. B 943 (2019) 114606 [arXiv:1712.08299[hep-th]].


[45] S. Choudhury et al, Circuit Complexity From Cosmological Islands, Symmetry 13 (2021) no. 7, 1301 [arXiv:2012.10234[hep-th]].


[46] S. Choudhury, Entanglement negativity in de Sitter biverse from Stringy Axionic Bell pair: An analysis using Bunch-Davies vacuum, arXiv:2301.05203[hep-th].


[47] P. J. Hu and R. X. Miao, Effective action, spectrum and first law of wedge holography, JHEP 03 (2022)145 [arXiv:2201.02014].


[48] H. Geng, A. Karch, C. P. Pardavila, S. Raju, L. Randall, M. Riojas, and S. Shashi, Jackiw-Teitelboim Gravity from the Karch-Randall Braneworld, Phys.Rev.Lett. 129 (2022) 23, 231601 [arXiv:2206.04695].


[49] H. Geng, Aspects of AdS2 Quantum Gravity and the Karch-Randall Braneworld, JHEP 09 (2022) 024 [arXiv:2206.11277[hep-th]].


[50] N. Ogawa, T. Takayanagi, T. Tsuda and T. Waki, Wedge Holography in Flat Space and Celestial Holography, [arXiv:2207.06735].


[51] N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [1408.3203].


[52] N. Ogawa, T. Takayanagi, T. Tsuda and T. Waki, Wedge Holography in Flat Space and Celestial Holography, Phys. Rev. D 107, 026001 [arXiv:2207.06735[hep-th]].


[53] A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113].


[54] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603].


[55] A. Karch and L. Randall, Geometries with mismatched branes, J. High Energ. Phys. 2020, 166 (2020) [arXiv:2006.10061[hep-th]].


[56] J. M. Penín, K. Skenderis and B. Withers, Massive holographic QFTs in de Sitter, SciPost Phys. 12, 182 (2022) [arXiv:2112.14639[hep-th]].


[57] K. Hashimoto, N. Iizuka, and Y. Matsuo, Islands in Schwarzschild black holes, J. High Energ. Phys. 2020, 85 (2020) [arXiv:2004.05863[hep-th]].


[58] G. Yadav and N. Joshi, Cosmological and black hole islands in multi-event horizon spacetimes, Phys. Rev. D 107, 026009 (2023) [arXiv:2210.00331[hep-th]].


[59] S. Chapman, D. A. Galante, E. D. Kramer, Holographic Complexity and de Sitter Space, J. High Energ. Phys. 2022, 198 (2022) [arXiv:2110.05522[hep-th]].


[60] G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15, 2738.


[61] O. Y. Kupervasser, Grandfather Paradox in Non-Quantum and Quantum Gravitation Theories, http://dx.doi.org/10.4236/ns.2014.611079.


[62] J. H. Baek and K. S. Choi, Islands in Proliferating de Sitter Spaces, [arXiv:2212.14753[hepth]].


[63] J. Maldacena and A. Milekhin, Humanly traversable wormholes, Phys. Rev. D 103, 066007 (2021) [arXiv:2008.06618[hep-th]].


This paper is available on arxiv under CC 4.0 license.