paint-brush
"Ikusasa Yilapho Noma Yiliphi Ibhizinisi Lithola Ukuqonda Emininingwaneni Yalo Kalula" kusho u-Aniruth ovela ku-Databricksnge@aniruth

"Ikusasa Yilapho Noma Yiliphi Ibhizinisi Lithola Ukuqonda Emininingwaneni Yalo Kalula" kusho u-Aniruth ovela ku-Databricks

nge Aniruth Narayanan
Aniruth Narayanan HackerNoon profile picture

Aniruth Narayanan

@aniruth

Databricks APM | Retool, Tesla, Microsoft, EY, Workiva | Berkeley...

6 imiz read2024/12/20
Read on Terminal Reader
Read this story in a terminal
Print this story
tldt arrow
zu-flagZU
Funda le ndaba ngesiZulu!
en-flagEN
Read this story in the original language, English!
es-flagES
Lee esta historia en Español!
ja-flagJA
この物語を日本語で読んでください!
so-flagSO
Sheekadan Af-Soomaali ku akhri!
az-flagAZ
Bu hekayəni Azərbaycan dilində oxuyun!
sv-flagSV
Läs denna berättelse på svenska!
id-flagID
Baca cerita ini dalam bahasa Indonesia!
it-flagIT
Leggi questa storia in italiano!
tg-flagTG
Ин қиссаро бо забони тоҷикӣ хонед!
sk-flagSK
Prečítajte si tento príbeh v slovenčine!
xh-flagXH
Funda eli bali ngesiXhosa!
uz-flagUZ
Bu hikoyani o'zbek tilida o'qing!
ZU

Kude kakhulu; Uzofunda

I-Aniruth ye-Databricks yabelana ngendlela amathuluzi abo e-AI enza ngayo idatha enkulu ibe lula futhi inike amandla amabhizinisi ukuthi athole imininingwane engasebenza. Kusuka ku-hyperpersonalization kuya ekusebenzisaneni nabahlaziyi, i-Databricks igxile ku-ecosystem evulekile, isipiliyoni esisebenziseka kalula, kanye nekusasa le-AI ekuguquleni ibhizinisi namandla omuntu siqu.
featured image - "Ikusasa Yilapho Noma Yiliphi Ibhizinisi Lithola Ukuqonda Emininingwaneni Yalo Kalula" kusho u-Aniruth ovela ku-Databricks
Aniruth Narayanan HackerNoon profile picture
Aniruth Narayanan

Aniruth Narayanan

@aniruth

Databricks APM | Retool, Tesla, Microsoft, EY, Workiva | Berkeley MET Alum

0-item

STORY’S CREDIBILITY

Interview

Interview

Between Two Computer Monitors: This story includes an interview between the writer and guest/interviewee.


Kwa-HackerNoon, siyazazisa izindaba ezimayelana nokwakha ubuchwepheshe obudala. Le mibuzo ayigcini nje ngemishini ye-AI—imayelana nokuqamba okusha, izinselele, kanye nobuchule bokwenza amathuluzi aphambili ekuphileni, afanele umphakathi wethu wabaholi bezobuchwepheshe, abakhi, nabafundi abanomqondo wekusasa.


Isingeniso

Igama lami ngingu- Aniruth . Ngisebenza eqenjini lesitoreji e -Databricks , lapho sisebenzela khona ukunika amandla amakhasimende ukuthi alondoloze inani elikhulu ledatha ngefomethi evulekile, engakala nge-Data Intelligence Platform. Ngokukhethekile, ngisebenza emizamweni yethu yokusebenzisana neDelta Lake kanye ne-Apache Iceberg.


I-HackerNoon: Iyiphi inkinga enkulu umkhiqizo wakho we-AI oklanyelwe ukuyixazulula, futhi yini esebenzayo ngendlela yakho yokuyixazulula?

I-Aniruth : I-Databricks ihlanganisa idatha ne-AI ukuze inikeze amakhasimende ubuhlakani obusebenzisekayo—lokho esikubiza ngokuthi ubuhlakani bedatha. Lokhu kufaka phakathi ukufaka idatha enkulu, i-ETL, isitoreji esikhulu, imibuzo yobuhlakani bebhizinisi, kanye nemithwalo yemisebenzi ye-AI. Amasu asetshenziswa emshinini wokufunda eminyakeni eyishumi edlule abekhona kusukela ngawo-1980; ukwanda kwedatha enkulu kwenze kwaba nokwenzeka ukusebenzisa ama-algorithm esikalini.


Amasu afana nokwaziswa kokudutshulwa okuncane noma i-RAG ancike kudatha yekhwalithi ephezulu. Amamodeli anedatha engcono awina uma kuqhathaniswa nalawo anezakhiwo ezingcono. I-Databricks ifake utshalomali olukhulu emizamweni ehamba phambili esikhaleni sedatha, iphayona ekwakhiweni kwe-lakehouse ngamafomethi edatha avulekile kanye nokuphatha okuvulekile, lapho amakhasimende ekwazi ukuthola imininingwane engcono kakhulu ngokusebenza okungcono kakhulu okuvela kumachibi edatha.


Iyiphi indlela oyisebenzisile ukukhetha amamodeli athile e-AI alo mkhiqizo, futhi inkampani yakho izithatha kanjani izinqumo ezinjengalezi?

Sisebenzisa amamodeli e-AI ngezindlela eziningi emkhiqizweni - njenge-Llama 3 yomsizi we-AI. Sikholelwa kudatha evulekile kanye ne-AI ecosystem futhi sikhuthaza amakhasimende ethu ukuthi asebenzise noma iyiphi imodeli azikhethele yona. Sisiza ukwenza isiqiniseko sokuthi amakhasimende anokuphatha kokuphela kuze kube sekugcineni kuwo wonke umjikelezo wempilo we-AI kungakhathaliseki ukuthi amamodeli awasebenzisayo anjani, ukuze akwazi ukugxila ekwenzeni amamodeli awo akhelwe inhloso izimo zawo zokusebenzisa.


Uqinisekisa kanjani ukuthi umkhiqizo wakho uletha imiphumela enembile nengachemi kubasebenzisi?

Sisebenzise umzamo omkhulu kanye nokutshalwa kwezimali ekubekeni phambili ukunemba nezimpendulo ezingachemile zokusetshenziswa kwe-AI phakathi kwemikhiqizo yethu, futhi siyaqhubeka nokuhlola njalo.


Lunjani usuku lwakho empilweni njengomphathi womkhiqizo?

Idatha nesikhala se-AI sishintsha ngokushesha, ngakho-ke kubaluleke kakhulu ukugcina usesikhathini samanje. Usuku lwami lungahlanganisa ukukhuluma namakhasimende, ukuhlaziya imakethe, ukuhlanganisa idokhumenti yezidingo zomkhiqizo, noma ukulungiselela izinto zokuthengisa. Ingxenye engiyithandayo ukwenza imidwebo ekhombisa ukuthi izinto zizosebenza kanjani, njengoba kumnandi kakhulu ukuguqula umbono ube obonakalayo.


Iluphi impumelelo enkulu elandelayo ku-AI okufanele wonke umuntu ayibuke?

Kuningi ukuphumelela okukhulu okuzayo maduze. Okunye engikuthakaselayo ikakhulukazi ukwenziwa komuntu siqu kokuqukethwe. Kule minyaka eyishumi edlule, izikhangiso zicushwe kahle kumbheki othile. Ezinye izici zokuqukethwe zishuniwe, njengalokho isithonjana i-Netflix esibonisa umsebenzisi, kodwa okuqukethwe kwangempela (ividiyo ngokwayo) ayikalungiswa. Kuzokujabulisa ukubona ukuthi abaqondisi/abakhiqizi babhalansisa kanjani indaba abayifunayo kanye nezintshisekelo zabasebenzisi.


Iyiphi inselelo enkulu oke wabhekana nayo ekuletheni lo mkhiqizo we-AI emakethe, kusukela emcabangweni kuya ekuqalisweni?

Ngisebenza ekugcinweni kwedatha enkulu, okungadida kakhulu ukuyiqonda. Sinokulungiselelwa okuhlukahlukene kwe-AI kudatha, kodwa kuvame ukuba nemibuzo mayelana nokuthi lokhu kulungiselelwa kwenziwa nini, ukuthi kusebenza kanjani, lokho okungakubandakanyi, njll. Ngalezi zinhlobo zemibuzo, kubalulekile ukuqinisekisa ukuthi sinemiyalezo ecacile nengaguquki mayelana sakha ini nokuthi kungani. Ngithole ukuthi ukuchaza imbangela yokulinganiselwa kuthinta kahle kakhulu amakhasimende.


Uyibona kanjani ngeso lengqondo i-AI ithuthuka ukuze iqonde kangcono futhi isabele emizweni yabantu, futhi yiziphi izinselelo noma amathuba owabonayo kuleyo ndawo?

Amamodeli e-Multimodal azoba ngcono kakhulu eminyakeni ezayo, okuzoshintsha indlela yethu eyinhloko yokusebenzisana ne-AI. Ukuthola imizwa yomuntu kulula kakhulu kusuka olwazini olubonakalayo noma olulalelwayo uma kuqhathaniswa nombhalo. Ngicabanga ukuthi kunethuba lokudala ukusebenzisana kwemvelo okwengeziwe kuchungechunge olubanzi lwezimo.


Imaphi ama-metrics okusebenza noma ama-KPI owalandelayo ukuze ulinganise impumelelo yalo mkhiqizo we-AI?

Ngokuvamile sifuna ukubona impendulo nokusetshenziswa okuhle. Ngikhuluma namakhasimende kaningi ukuze ngithole umuzwa wokuthi kungani futhi ecabanga kanjani ngemikhiqizo yethu, okuwukhiye wokuchaza ukuthi kungani sibona amathrendi athile kumamethrikhi.


Ukubheka kanjani ukuklama ukuzizwisa komkhiqizo okungagcini nje ngokusebenza kodwa futhi okuhehayo nokukhumbulekayo kubasebenzisi?

Imikhiqizo yedatha emikhulu idume ngenselele enkulu ukuyisebenzisa. Izibonelo ezilula kulula ukuzisetha, kodwa umsebenzi omningi wokukhiqiza ngokuvamile ubandakanya ukucushwa okudidayo nekhodi. Kube yinto ehamba phambili kimina ukwakha ukusebenza okudingwa ngamakhasimende, kuyilapho ngenza umkhiqizo ube lula kakhulu ukuwusebenzisa.


Ikusasa yilapho noma yiliphi ibhizinisi lithola imininingwane kudatha yalo kalula. Emhlabeni wamanje, imininingwane yebhizinisi eqhutshwa idatha ivamise ukukhawulelwa ezinkampanini ezinkulu - kodwa nazo zingancamela ukuzizwisa okulula.


Esikhathini eside, ucabanga ukuthi i-AI izomsiza kanjani umuntu ukuthi afinyelele amandla akhe aphelele?

Kumuntu ngamunye, ngijabule kakhulu ngokuhlanganiswa kwe-AI ku-hardware. Kuze kube manje, sesiyibonile kakhulu i-AI ezinhlelweni zesoftware ezifana namawebhusayithi. Kunezinhlelo zokusebenza eziningi ezinkulu zemishini yokwakha esebenzisa i-AI, futhi sesivele siqala ukubona eminye yaleyo mithelela ezimotweni nasemafonini.


Uwubona kuphi umkhiqizo uvela eminyakeni embalwa ezayo, futhi yiziphi izici okujabulela kakhulu ukuzengeza?

I-Databricks isendleleni ebheke ekubeni ibe lula futhi ibe namandla kakhulu ngesikhathi esifanayo. Miningi imizamo esisebenza kuyo yonke indawo, kusukela ekwenzeni idatha yezinga elikhulu nokubala kalula ukusebenza ngayo kuya ekuthuthukiseni ukusebenza kwemibuzo nokugeleza komsebenzi. Ngokwami, ngicabanga ukuthi sinezici ezijabulisayo ezizayo maduze kuwo wonke umkhiqizo ezenza ukuhamba komsebenzi kube lula nge-AI. Izibonelo zifaka amazwana akhiqizwe yi-AI kudatha, iziphakamiso zekhodi ye-AI kubahleli bamanothibhuku, kanye nezokuxhumana ze-AI ukuze uxoxe nedatha (isibonelo, i-Databricks AI/BI Genie).


Uthini umbono wakho ngomthelela we-AI emisebenzini, futhi ukusingatha kanjani lokho kukhathazeka esu lakho lomkhiqizo?

Kunokukhathazeka ngokuthi i-AI izokwehlisa yini inani lemisebenzi. Imikhiqizo yethu yakhelwe ukwandisa ulwazi olubalulekile, oluvame ukuza ngokuhlangana nabasebenzisi. Isibonelo, nge-AI/BI Genie, abasebenzisi bangakha izixhumanisi kudatha yabo. Lona okuhlangenwe nakho komlingo, lapho abasebenzisi bengabuza khona imibuzo futhi bathole izimpendulo eziqondile kubo. Eqinisweni, abasebenzisi bangabheka i-SQL esetshenziswayo ukuze baqinisekise ukuthi yilokho abakufunayo. Lokhu kubanjiswana nabahlaziyi, kunciphisa isikhathi esibathathayo ukusuka emcabangweni baye ekuqondeni.


Iyiphi impendulo yomsebenzisi ekumangazile futhi eholele ezinguqukweni kumephu yakho yomgwaqo, isu noma ulwazi lomkhiqizo?

Okunye okwangimangaza kakhulu wubunzima obukhona kwezinye izinkampani ezinkulu. Lokhu kwethula izidingo emkhiqizweni ebengingeke ngizicabangele ngokwami. Isibonelo esivamile ukucabanga ngamasu okufuduka lapho wethula umkhiqizo omusha. Ngokuvamile, izinkampani ezinkulu zizobe zihlanganise ubuchwepheshe obukhona (imvamisa isofthiwe yomthombo ovulekile) noma zakhe isofthiwe yangokwezifiso ukuxazulula inkinga ebhekana nomkhiqizo wethu omusha. Ngokuvamile kuthatha isikhathi ukuqonda ukuthi kungani futhi kanjani lokhu kuhlanganiswa ukuze kuqinisekiswe ukuthi sinesixazululo esihlanganisa wonke amathuba.


Ungathanda ukugxila ekuphenduleni eminye yale mibuzo? Isixhumanisi sesifanekiso si LAPHA. Unentshisekelo yokufunda okuqukethwe okuvela kuzo zonke iziyalezo zethu zokubhala? Chofoza LAPHA.


L O A D I N G
. . . comments & more!

About Author

Aniruth Narayanan HackerNoon profile picture
Aniruth Narayanan@aniruth
Databricks APM | Retool, Tesla, Microsoft, EY, Workiva | Berkeley MET Alum

HANG TAGS

LESI SIHLOKO SETHULWE NGAPHAKATHI...

Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite