Kwimeko ye-digital yehlabathi ezininzi, into kufuneka isebenze ngokushesha. I-Splunk kunye ne-PagerDuty yenza zonke iinkonzo kwi-stop, okuholela ukunciphisa iinkonzo, iinkonzo ze-customers, kunye namaqela ze-IT. Yoko ke, i-automation yenza imidlalo ye-incident management kwinqanaba elitsha ngokubonisa i-Splunk kunye ne-PagerDuty. Kule, iinkampani zibonisa indlela yokufumana, ukwandisa kunye nokuphumelela iinkonzo ze-system, ngoko ukunciphisa iimeko ze-stop kunye nokwandisa iinkonzo ze-IT. I-Vidushi Sharma yenza iinkqubo eziqhelekileyo zokusetyenziswa kwe-automation, ukunceda iinkqubo ezidlulileyo ze-manual. I-She helped build a system with Splunk's powerful log analysis, where anomalies are captured in real time, eliminating the need for constant manual monitoring. With this integrated with PagerDuty's alerting and escalation tools, incidents are assigned to the right teams instantly. The result? A 40% faster response time and a 30% improvement in intermediate time to resolution (MTTR). Ukusetyenziswa nangaphezulu, i-She used machine learning models to classify incidents intelligently. Iingcingo ezininzi ziquka ukunceda xa iingcingo ze-low-priority akufutshane inkqubo. Kwakhona, ukufumana ink Yintoni iindawo ezininzi ezininzi, ekwenzeni iinkonzo zophando ezihlangeneyo kwi-Splunk. Ngaphandle kokusebenzisa iiyure ekubeni kwi-logs, amaqela ziyafumaneka ukucacisa ngexesha eliphantsi kwimeko ye-problem, wathi Vidushi. Ukongezelela oku, i-self-healing automation workflows kwi-PagerDuty, eyenziwe ngexesha elinye kunye neqela yakhe, ngoku ngokuchofoza iingxaki ezininzi ngokufanelekileyo ngokufanisa i-service reboots okanye i-rollbacks ngaphandle kokufaneleka umntu. Ngenxa yezi zixazululo, iinkonzo zilungele ukunciphisa i-60% kwi-resolution ye-manual, okuvumela amaqela ze-IT ukuyisombulula iingxaki ezininzi. Enye isixazululo yaba i-data-driven approach to incident management. Nge-Splunk real-time dashboards, eyenziwe nguVidushi kunye neqela yayo, amaqela ziyafumaneka inkcazelo oluthe ngqo kunye ne-performance metric ezifana ne-MTTR, i-MTTA, i-SLA adherence, kunye ne-escalation trends. Ukubonisa oku kuthetha umongameli ukuthatha imibuzo efanelekileyo kunye neengxaki ezininzi ezininzi. Kwakhona, iinkqubo ze-PagerDuty ye-escalation ye-automated zibonisa ukuba iingxaki ezininzi ezininzi ziyafumaneka kwiingxaki, ukunciphisa iingxaki ezininzi kwama-50%, kwaye ukunciphisa ukuxhaswa kwe-SLA ngama-25%. Ukwandisa ukuxhaswa, i-Vidushi kwandisa ukwakhiwa kwezazi ezahlukahlukeneyo ezinikezelela kwizixazululo zeengxaki kunye neengxaki ezilungileyo, okwenza ukuxhaswa kwama-20% ngokukhawuleza kulo lonke ibhodi. Emva kokufunda malunga neentshukumo kwindawo yobugcisa, uqhagamshelane nathi ukuba i-future ye-incident management iyiphi na i-AI-powered predictive analytics kunye ne-adaptive automation. Ngaphandle kokufunda ukuba kukho into yokutshala, iimodeli ze-machine learning iya kubuyekeza iingxaki ngaphambi kokufumana, okuvumela amaqela ukuyisombulula iingxaki ezininzi ngokufanelekileyo. Iingcebiso ze-AI ze-multimodal ziyafumanisa i-analytics ezininzi kunye ne-real-time, ukunceda iinkonzo zokusebenza ngokufanelekileyo. Njengoko izakhiwo ze-IT ziqongileyo, ukunceda, kunye nokuphendula iingxaki ngokusebenzisa inkqubo ye-intelligent, i-automated iya kuba kubalulekile ukufikelela kwiingxaki. Ukusebenzisana kwe-Splunk kunye ne-PagerDuty i-Vidushi Sharma iye yandisa indlela yokusebenza kwezingxaki kunye nokuphendula imiphumela ngokukhawuleza, i-intelligent, kunye ne-efficient. Njengoko iinkampani zithembisa iinkqubo ze-digital, iingxaki zayo kwi-automation-driven incident management iya kuba isakhiwo yokuphendula kwinkqubo ye-IT kunye ne-operational efficiency. Le nqaku lithunyelwe njenge-release ka-Kashvi Pandey phantsi kwe-HackerNoon's Business Blogging Program. Le nqaku lithunyelwe njenge-release ka-Kashvi Pandey phantsi kwe-HackerNoon's Business Blogging Program.