Bu makale arxiv'de CC BY 4.0 DEED lisansı altında mevcuttur .
Yazarlar:
(1) Ehsan Toreini, Surrey Üniversitesi, Birleşik Krallık;
(2) Maryam Mehrnezhad, Londra Royal Holloway Üniversitesi;
(3) Aad Van Moorsel, Birmingham Üniversitesi.
Arka Plan ve İlgili Çalışmalar
Uygulama ve Performans Analizi
Bu makale, algoritmik adaletin hesaplanması için güvenilir bir hizmet mimarisi ve güvenli bir protokol olan Hizmet Olarak Adalet (FaaS) önermektedir. FaaS, ML sisteminden orijinal veri kümesini veya model bilgisini paylaşmasını istemeden adaleti hesaplayan bir hizmet olarak tasarlanmıştır. Bunun yerine, ML sistemi tarafından sunulan veri özelliklerinin değerlerinin kriptogramlar şeklinde şifrelenmiş bir temsilini gerektirir. Protokolün olması gerektiği gibi yürütüldüğünden emin olmak için kriptogramda etkileşimli olmayan Sıfır Bilgi Kanıtları kullandık. Bu kriptogramlar, herkesin ML sisteminin adilliği için hesaplamaların doğruluğunu denetlemesi için bir kamu adalet kuruluna asılır. Bu, birleştirilmiş öğrenme yaklaşımını kullanan diğer benzer tekliflerin aksine, FaaS mimarimiz, çalışması için belirli bir makine öğrenimi modeline veya bir adalet ölçüm tanımına dayanmadığından, gizliliği koruyan adalet hesaplamasında yeni bir yaklaşımdır. Bunun yerine, kişi istediği modeli ve tercih ettiği adalet ölçüsünü uygulama özgürlüğüne sahiptir.
Bu yazıda güvenlik protokolünün veri gizliliğini garanti ettiğini ve herhangi bir model bilgisini sızdırmadığını kanıtladık. Önceki tasarımlarla karşılaştırıldığında, tasarımımıza olan güven, kriptogramın ML sistemi tarafından doğru şekilde oluşturulmasında yatmaktadır. Bunun, makine öğrenimi sistemlerinin birçok yasal, ticari ve etik gereklilikleri dikkate alınarak, güvenilen üçüncü tarafa verilere tam erişim sağlamaktan daha gerçekçi bir çözüm olduğu tartışılabilir. Bu aynı zamanda kişinin ML sistemine olan güvenini artırma konusunda yeni bir zorluk sağlar. Kriptogramların oluşturulmasına olan güvenin arttırılması, sunulan protokolden sonra ilginç bir araştırma sorunu olmaya devam etmektedir.
FaaS'ın kavram kanıtını uyguladık ve ticari donanımlar üzerinde performans deneyleri gerçekleştirdik. Protokolün tamamlanması veri noktası başına saniyeler alır, dolayısıyla veri noktası sayısı fazlaysa (onbinlerce) performans zorlukları ortaya çıkar. Performans zorluğunu azaltmak için güvenlik protokolü, kriptogramın oluşturulmasının çevrimdışı olarak yapılabildiği şekilde düzenlenmiştir. Kriptogramdan adalet hesaplamasının performansı gelecekteki çalışmalarda ele alınması gereken bir zorluktur. Hep birlikte, FaaS'ın ve sunulan temel güvenlik protokolünün, AI algoritmalarının adilliğini hesaplamak ve doğrulamak için yeni ve umut verici bir yaklaşım sağladığına inanıyoruz.