paint-brush
Трансформисање ЦСВ датотека у графиконе помоћу ЛЛМ-а: Водич корак по коракод стране@neo4j
227 читања

Трансформисање ЦСВ датотека у графиконе помоћу ЛЛМ-а: Водич корак по корак

од стране Neo4j41m2024/10/29
Read on Terminal Reader

Предуго; Читати

Истражите коришћење ЛЛМ-а за претварање ЦСВ датотека у структуре графова, побољшавајући моделирање података у Нео4ј-у уз итеративни приступ заснован на брзим корацима.
featured image - Трансформисање ЦСВ датотека у графиконе помоћу ЛЛМ-а: Водич корак по корак
Neo4j HackerNoon profile picture
0-item
1-item


Како пролазе ЛЛМ када покушавају да креирају графиконе од равних ЦСВ датотека?

Велики део мог посла је побољшање корисничког искуства са Нео4ј. Често је унос података у Нео4ј и њихово ефикасно моделовање кључни изазов за кориснике, посебно у раним данима. Иако је почетни модел података важан и треба га размотрити, он се лако може рефакторисати како би се побољшале перформансе како величина података или број корисника расте.


Дакле, као изазов за себе, мислио сам да ћу видети да ли ЛЛМ може помоћи са почетним моделом података. Ако ништа друго, то би показало како су ствари повезане и пружило кориснику неке брзе резултате које може показати другима.


Интуитивно, знам да је моделирање података итеративни процес и да се одређени ЛЛМ лако могу омести великим количинама података, тако да је ово представљало добру прилику да се ЛангГрапх користи за рад у циклусима кроз податке.


Хајде да заронимо у упутства која су довела до тога.

Основе моделирања графова

Курс Основе моделирања података графа на ГрапхАцадеми води вас кроз основе моделирања података у графикону, али као први пролаз користим следећа правила:


  • Именице постају ознаке — Оне описују ствар коју чвор представља.
  • Глаголи постају типови односа - Они описују како су ствари повезане.
  • Све остало постаје својства (посебно прилози) — Имате име и можете возити сива кола.


Глаголи могу бити и чворови; можда ћете бити срећни што знате да је особа наручила производ, али тај основни модел вам не дозвољава да знате где и када је производ наручен. У овом случају, ред постаје нови чвор у моделу.


Сигуран сам да би се ово могло претворити у промпт за креирање нултог приступа моделирању података графикона.

Итеративни приступ

Покушао сам ово накратко пре неколико месеци и открио да је модел који сам користио постао лако ометен када се бавио већим шемама, а упити су прилично брзо достигли границе токена ЛЛМ-а.


Мислио сам да овог пута пробам итеративни приступ, узимајући кључеве један по један. Ово би требало да помогне да се избегне ометање јер ЛЛМ треба да разматра само једну по једну ставку.


Завршни приступ користио је следеће кораке:


  1. Учитајте ЦСВ датотеку у Пандас оквир података.
  2. Анализирајте сваку колону у ЦСВ-у и додајте је моделу података лабаво заснованом на ЈСОН шеми.
  3. Идентификујте и додајте јединствене ИД-ове који недостају за сваки ентитет.
  4. Прегледајте модел података ради тачности.
  5. Генеришите Ципхер изјаве за увоз чворова и односа.
  6. Генеришите јединствена ограничења која подупиру изјаве о увозу.
  7. Креирајте ограничења и покрените увоз.

Тхе Дата

Брзо сам погледао Каггле за занимљив скуп података . Скуп података који се истакао је Спотифи Мост Стреаминг Сонгс .


 import pandas as pd csv_file = '/Users/adam/projects/datamodeller/data/spotify/spotify-most-streamed-songs.csv' df = pd.read_csv(csv_file) df.head() track_name artist(s)_name artist_count released_year released_month released_day in_spotify_playlists in_spotify_charts streams in_apple_playlists … key mode danceability_% valence_% energy_% acousticness_% instrumentalness_% liveness_% speechiness_% cover_url 0 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 2 2023 7 14 553 147 141381703 43 … B Major 80 89 83 31 0 8 4 Not Found 1 LALA Myke Towers 1 2023 3 23 1474 48 133716286 48 … C# Major 71 61 74 7 0 10 4 https://i.scdn.co/image/ab67616d0000b2730656d5… 2 vampire Olivia Rodrigo 1 2023 6 30 1397 113 140003974 94 … F Major 51 32 53 17 0 31 6 https://i.scdn.co/image/ab67616d0000b273e85259… 3 Cruel Summer Taylor Swift 1 2019 8 23 7858 100 800840817 116 … A Major 55 58 72 11 0 11 15 https://i.scdn.co/image/ab67616d0000b273e787cf… 4 WHERE SHE GOES Bad Bunny 1 2023 5 18 3133 50 303236322 84 … A Minor 65 23 80 14 63 11 6 https://i.scdn.co/image/ab67616d0000b273ab5c9c…


5 редова × 25 колона


Релативно је једноставно, али одмах видим да би требало да постоје везе између песама и извођача.


Постоје и изазови у вези са чистоћом података које треба превазићи, у смислу имена колона и вредности уметника раздвојених зарезима унутар колоне имена_извођача.

Избор ЛЛМ

Заиста сам желео да користим локални ЛЛМ за ово, али сам рано открио да Ллама 3 не би то решио. Ако сте у недоумици, вратите се на ОпенАИ:


 from langchain_core.prompts import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from typing import List from langchain_core.output_parsers import JsonOutputParser from langchain_openai import ChatOpenAI llm = ChatOpenAI(model="gpt-4o")

Креирање модела података

Користио сам скраћени скуп упутстава за моделирање да бих направио промпт за моделирање података. Морао сам да конструишем промпт неколико пута да бих добио конзистентан резултат.


Пример нулте слике је функционисао релативно добро, али сам открио да је резултат недоследан. Дефинисање структурираног излаза за задржавање ЈСОН излаза је заиста помогло:


 class JSONSchemaSpecification(BaseModel): notes: str = Field(description="Any notes or comments about the schema") jsonschema: str = Field(description="A JSON array of JSON schema specifications that describe the entities in the data model")

Пример неколико снимака излаза

Сам ЈСОН је такође био недоследан, па сам на крају дефинисао шему на основу скупа података о препорукама за филм.


Пример излаза:


 example_output = [ dict( title="Person", type="object", description="Node", properties=[ dict(name="name", column_name="person_name", type="string", description="The name of the person", examples=["Tom Hanks"]), dict(name="date_of_birth", column_name="person_dob", type="date", description="The date of birth for the person", examples=["1987-06-05"]), dict(name="id", column_name="person_name, date_of_birth", type="string", description="The ID is a combination of name and date of birth to ensure uniqueness", examples=["tom-hanks-1987-06-05"]), ], ), dict( title="Director", type="object", description="Node", properties=[ dict(name="name", column_name="director_names", type="string", description="The name of the directors. Split values in column by a comma", examples=["Francis Ford Coppola"]), ], ), dict( title="Movie", type="object", description="Node", properties=[ dict(name="title", column_name="title", type="string", description="The title of the movie", examples=["Toy Story"]), dict(name="released", column_name="released", type="integer", description="The year the movie was released", examples=["1990"]), ], ), dict( title="ACTED_IN", type="object", description="Relationship", properties=[ dict(name="_from", column_name="od", type="string", description="Person found by the `id`. The ID is a combination of name and date of birth to ensure uniqueness", examples=["Person"]), dict(name="_to", column_name="title", type="string", description="The movie title", examples=["Movie"]), dict(name="roles", type="string", column_name="person_roles", description="The roles the person played in the movie", examples=["Woody"]), ], ), dict( title="DIRECTED", type="object", description="Relationship", properties=[ dict(name="_from", type="string", column_name="director_names", description="Director names are comma separated", examples=["Director"]), dict(name="_to", type="string", column_name="title", description="The label of the node this relationship ends at", examples=["Movie"]), ], ), ]


Морао сам да одступим од строге ЈСОН шеме и додам поље цолумн_наме у излаз да бих помогао ЛЛМ-у да генерише скрипту за увоз. Навођење примера описа је такође помогло у овом погледу, иначе својства коришћена у клаузули МАТЦХ нису била доследна.

Тхе Цхаин

Ево последњег упутства:


 model_prompt = PromptTemplate.from_template(""" You are an expert Graph Database administrator. Your task is to design a data model based on the information provided from an existing data source. You must decide where the following column fits in with the existing data model. Consider: * Does the column represent an entity, for example a Person, Place, or Movie? If so, this should be a node in its own right. * Does the column represent a relationship between two entities? If so, this should be a relationship between two nodes. * Does the column represent an attribute of an entity or relationship? If so, this should be a property of a node or relationship. * Does the column represent a shared attribute that could be interesting to query through to find similar nodes, for example a Genre? If so, this should be a node in its own right. ## Instructions for Nodes * Node labels are generally nouns, for example Person, Place, or Movie * Node titles should be in UpperCamelCase ## Instructions for Relationships * Relationshops are generally verbs, for example ACTED_IN, DIRECTED, or PURCHASED * Examples of good relationships are (:Person)-[:ACTED_IN]->(:Movie) or (:Person)-[:PURCHASED]->(:Product) * Relationships should be in UPPER_SNAKE_CASE * Provide any specific instructions for the field in the description. For example, does the field contain a list of comma separated values or a single value? ## Instructions for Properties * Relationships should be in lowerPascalCase * Prefer the shorter name where possible, for example "person_id" and "personId" should simply be "id" * If you are changing the property name from the original field name, mention the column name in the description * Do not include examples for integer or date fields * Always include instructions on data preparation for the field. Does it need to be cast as a string or split into multiple fields on a delimiting value? * Property keys should be letters only, no numbers or special characters. ## Important! Consider the examples provided. Does any data preparation need to be done to ensure the data is in the correct format? You must include any information about data preparation in the description. ## Example Output Here is an example of a good output: {example_output} ## New Data: Key: {key} Data Type: {type} Example Values: {examples} ## Existing Data Model Here is the existing data model: {existing_model} ## Keep Existing Data Model Apply your changes to the existing data model but never remove any existing definitions. """, partial_variables=dict(example_output=dumps(example_output))) model_chain = model_prompt | llm.with_structured_output(JSONSchemaSpecification)


Извршавање ланца

Да бих итеративно ажурирао модел, прешао сам преко кључева у оквиру података и проследио сваки кључ, његов тип података и првих пет јединствених вредности у промпт:


 from json_repair import dumps, loads existing_model = {} for i, key in enumerate(df): print("\n", i, key) print("----------------") try: res = try_chain(model_chain, dict( existing_model=dumps(existing_model), key=key, type=df[key].dtype, examples=dumps(df[key].unique()[:5].tolist()) )) print(res.notes) existing_model = loads(res.jsonschema) print([n['title'] for n in existing_model]) except Exception as e: print(e) pass existing_model


Излаз конзоле:


 0 track_name ---------------- Adding 'track_name' to an existing data model. This represents a music track entity. ['Track'] 1 artist(s)_name ---------------- Adding a new column 'artist(s)_name' to the existing data model. This column represents multiple artists associated with tracks and should be modeled as a new node 'Artist' and a relationship 'PERFORMED_BY' from 'Track' to 'Artist'. ['Track', 'Artist', 'PERFORMED_BY'] 2 artist_count ---------------- Added artist_count as a property of Track node. This property indicates the number of artists performing in the track. ['Track', 'Artist', 'PERFORMED_BY'] 3 released_year ---------------- Add the released_year column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 4 released_month ---------------- Adding the 'released_month' column to the existing data model, considering it as an attribute of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 5 released_day ---------------- Added a new property 'released_day' to the 'Track' node to capture the day of the month a track was released. ['Track', 'Artist', 'PERFORMED_BY'] 6 in_spotify_playlists ---------------- Adding the new column 'in_spotify_playlists' to the existing data model as a property of the 'Track' node. ['Track', 'Artist', 'PERFORMED_BY'] 7 in_spotify_charts ---------------- Adding the 'in_spotify_charts' column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 8 streams ---------------- Adding a new column 'streams' to the existing data model, representing the number of streams for a track. ['Track', 'Artist', 'PERFORMED_BY'] 9 in_apple_playlists ---------------- Adding new column 'in_apple_playlists' to the existing data model ['Track', 'Artist', 'PERFORMED_BY'] 10 in_apple_charts ---------------- Adding 'in_apple_charts' as a property to the 'Track' node, representing the number of times the track appeared in the Apple charts. ['Track', 'Artist', 'PERFORMED_BY'] 11 in_deezer_playlists ---------------- Add 'in_deezer_playlists' to the existing data model for a music track database. ['Track', 'Artist', 'PERFORMED_BY'] 12 in_deezer_charts ---------------- Adding a new property 'inDeezerCharts' to the existing 'Track' node to represent the number of times the track appeared in Deezer charts. ['Track', 'Artist', 'PERFORMED_BY'] 13 in_shazam_charts ---------------- Adding new data 'in_shazam_charts' to the existing data model. This appears to be an attribute of the 'Track' node, indicating the number of times a track appeared in the Shazam charts. ['Track', 'Artist', 'PERFORMED_BY'] 14 bpm ---------------- Added bpm column as a property to the Track node as it represents a characteristic of the track. ['Track', 'Artist', 'PERFORMED_BY'] 15 key ---------------- Adding the 'key' column to the existing data model. The 'key' represents the musical key of a track, which is a shared attribute that can be interesting to query through to find similar tracks. ['Track', 'Artist', 'PERFORMED_BY'] 16 mode ---------------- Adding 'mode' to the existing data model. It represents a musical characteristic of a track, which is best captured as an attribute of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 17 danceability_% ---------------- Added 'danceability_%' to the existing data model as a property of the Track node. The field represents the danceability percentage of the track. ['Track', 'Artist', 'PERFORMED_BY'] 18 valence_% ---------------- Adding the valence percentage column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 19 energy_% ---------------- Integration of the new column 'energy_%' into the existing data model. This column represents an attribute of the Track entity and should be added as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 20 acousticness_% ---------------- Adding acousticness_% to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 21 instrumentalness_% ---------------- Adding the new column 'instrumentalness_%' to the existing Track node as it represents an attribute of the Track entity. ['Track', 'Artist', 'PERFORMED_BY'] 22 liveness_% ---------------- Adding the new column 'liveness_%' to the existing data model as an attribute of the Track node ['Track', 'Artist', 'PERFORMED_BY'] 23 speechiness_% ---------------- Adding the new column 'speechiness_%' to the existing data model as a property of the 'Track' node. ['Track', 'Artist', 'PERFORMED_BY'] 24 cover_url ---------------- Adding a new property 'cover_url' to the existing 'Track' node. This property represents the URL of the track's cover image. ['Track', 'Artist', 'PERFORMED_BY']


Након неколико подешавања на упиту за руковање случајевима коришћења, завршио сам са моделом са којим сам био прилично задовољан. ЛЛМ је успео да утврди да се скуп података састоји од нумере, извођача и односа ПЕРФОРМЕД_БИ да повеже ово двоје:


 [ { "title": "Track", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "track_name", "type": "string", "description": "The name of the track", "examples": [ "Seven (feat. Latto) (Explicit Ver.)", "LALA", "vampire", "Cruel Summer", "WHERE SHE GOES", ], }, { "name": "artist_count", "column_name": "artist_count", "type": "integer", "description": "The number of artists performing in the track", "examples": [2, 1, 3, 8, 4], }, { "name": "released_year", "column_name": "released_year", "type": "integer", "description": "The year the track was released", "examples": [2023, 2019, 2022, 2013, 2014], }, { "name": "released_month", "column_name": "released_month", "type": "integer", "description": "The month the track was released", "examples": [7, 3, 6, 8, 5], }, { "name": "released_day", "column_name": "released_day", "type": "integer", "description": "The day of the month the track was released", "examples": [14, 23, 30, 18, 1], }, { "name": "inSpotifyPlaylists", "column_name": "in_spotify_playlists", "type": "integer", "description": "The number of Spotify playlists the track is in. Cast the value as an integer.", "examples": [553, 1474, 1397, 7858, 3133], }, { "name": "inSpotifyCharts", "column_name": "in_spotify_charts", "type": "integer", "description": "The number of times the track appeared in the Spotify charts. Cast the value as an integer.", "examples": [147, 48, 113, 100, 50], }, { "name": "streams", "column_name": "streams", "type": "array", "description": "The list of stream IDs for the track. Maintain the array format.", "examples": [ "141381703", "133716286", "140003974", "800840817", "303236322", ], }, { "name": "inApplePlaylists", "column_name": "in_apple_playlists", "type": "integer", "description": "The number of Apple playlists the track is in. Cast the value as an integer.", "examples": [43, 48, 94, 116, 84], }, { "name": "inAppleCharts", "column_name": "in_apple_charts", "type": "integer", "description": "The number of times the track appeared in the Apple charts. Cast the value as an integer.", "examples": [263, 126, 207, 133, 213], }, { "name": "inDeezerPlaylists", "column_name": "in_deezer_playlists", "type": "array", "description": "The list of Deezer playlist IDs the track is in. Maintain the array format.", "examples": ["45", "58", "91", "125", "87"], }, { "name": "inDeezerCharts", "column_name": "in_deezer_charts", "type": "integer", "description": "The number of times the track appeared in the Deezer charts. Cast the value as an integer.", "examples": [10, 14, 12, 15, 17], }, { "name": "inShazamCharts", "column_name": "in_shazam_charts", "type": "array", "description": "The list of Shazam chart IDs the track is in. Maintain the array format.", "examples": ["826", "382", "949", "548", "425"], }, { "name": "bpm", "column_name": "bpm", "type": "integer", "description": "The beats per minute of the track. Cast the value as an integer.", "examples": [125, 92, 138, 170, 144], }, { "name": "key", "column_name": "key", "type": "string", "description": "The musical key of the track. Cast the value as a string.", "examples": ["B", "C#", "F", "A", "D"], }, { "name": "mode", "column_name": "mode", "type": "string", "description": "The mode of the track (eg, Major, Minor). Cast the value as a string.", "examples": ["Major", "Minor"], }, { "name": "danceability", "column_name": "danceability_%", "type": "integer", "description": "The danceability percentage of the track. Cast the value as an integer.", "examples": [80, 71, 51, 55, 65], }, { "name": "valence", "column_name": "valence_%", "type": "integer", "description": "The valence percentage of the track. Cast the value as an integer.", "examples": [89, 61, 32, 58, 23], }, { "name": "energy", "column_name": "energy_%", "type": "integer", "description": "The energy percentage of the track. Cast the value as an integer.", "examples": [83, 74, 53, 72, 80], }, { "name": "acousticness", "column_name": "acousticness_%", "type": "integer", "description": "The acousticness percentage of the track. Cast the value as an integer.", "examples": [31, 7, 17, 11, 14], }, { "name": "instrumentalness", "column_name": "instrumentalness_%", "type": "integer", "description": "The instrumentalness percentage of the track. Cast the value as an integer.", "examples": [0, 63, 17, 2, 19], }, { "name": "liveness", "column_name": "liveness_%", "type": "integer", "description": "The liveness percentage of the track. Cast the value as an integer.", "examples": [8, 10, 31, 11, 28], }, { "name": "speechiness", "column_name": "speechiness_%", "type": "integer", "description": "The speechiness percentage of the track. Cast the value as an integer.", "examples": [4, 6, 15, 24, 3], }, { "name": "coverUrl", "column_name": "cover_url", "type": "string", "description": "The URL of the track's cover image. If the value is 'Not Found', it should be cast as an empty string.", "examples": [ "https://i.scdn.co/image/ab67616d0000b2730656d5ce813ca3cc4b677e05", "https://i.scdn.co/image/ab67616d0000b273e85259a1cae29a8d91f2093d", ], }, ], }, { "title": "Artist", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "artist(s)_name", "type": "string", "description": "The name of the artist. Split values in column by a comma", "examples": [ "Latto", "Jung Kook", "Myke Towers", "Olivia Rodrigo", "Taylor Swift", "Bad Bunny", ], } ], }, { "title": "PERFORMED_BY", "type": "object", "description": "Relationship", "properties": [ { "name": "_from", "type": "string", "description": "The label of the node this relationship starts at", "examples": ["Track"], }, { "name": "_to", "type": "string", "description": "The label of the node this relationship ends at", "examples": ["Artist"], }, ], }, ] [ { "title": "Track", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "track_name", "type": "string", "description": "The name of the track", "examples": [ "Seven (feat. Latto) (Explicit Ver.)", "LALA", "vampire", "Cruel Summer", "WHERE SHE GOES", ], }, { "name": "artist_count", "column_name": "artist_count", "type": "integer", "description": "The number of artists performing in the track", "examples": [2, 1, 3, 8, 4], }, { "name": "released_year", "column_name": "released_year", "type": "integer", "description": "The year the track was released", "examples": [2023, 2019, 2022, 2013, 2014], }, { "name": "released_month", "column_name": "released_month", "type": "integer", "description": "The month the track was released", "examples": [7, 3, 6, 8, 5], }, { "name": "released_day", "column_name": "released_day", "type": "integer", "description": "The day of the month the track was released", "examples": [14, 23, 30, 18, 1], }, { "name": "inSpotifyPlaylists", "column_name": "in_spotify_playlists", "type": "integer", "description": "The number of Spotify playlists the track is in. Cast the value as an integer.", "examples": [553, 1474, 1397, 7858, 3133], }, { "name": "inSpotifyCharts", "column_name": "in_spotify_charts", "type": "integer", "description": "The number of times the track appeared in the Spotify charts. Cast the value as an integer.", "examples": [147, 48, 113, 100, 50], }, { "name": "streams", "column_name": "streams", "type": "array", "description": "The list of stream IDs for the track. Maintain the array format.", "examples": [ "141381703", "133716286", "140003974", "800840817", "303236322", ], }, { "name": "inApplePlaylists", "column_name": "in_apple_playlists", "type": "integer", "description": "The number of Apple playlists the track is in. Cast the value as an integer.", "examples": [43, 48, 94, 116, 84], }, { "name": "inAppleCharts", "column_name": "in_apple_charts", "type": "integer", "description": "The number of times the track appeared in the Apple charts. Cast the value as an integer.", "examples": [263, 126, 207, 133, 213], }, { "name": "inDeezerPlaylists", "column_name": "in_deezer_playlists", "type": "array", "description": "The list of Deezer playlist IDs the track is in. Maintain the array format.", "examples": ["45", "58", "91", "125", "87"], }, { "name": "inDeezerCharts", "column_name": "in_deezer_charts", "type": "integer", "description": "The number of times the track appeared in the Deezer charts. Cast the value as an integer.", "examples": [10, 14, 12, 15, 17], }, { "name": "inShazamCharts", "column_name": "in_shazam_charts", "type": "array", "description": "The list of Shazam chart IDs the track is in. Maintain the array format.", "examples": ["826", "382", "949", "548", "425"], }, { "name": "bpm", "column_name": "bpm", "type": "integer", "description": "The beats per minute of the track. Cast the value as an integer.", "examples": [125, 92, 138, 170, 144], }, { "name": "key", "column_name": "key", "type": "string", "description": "The musical key of the track. Cast the value as a string.", "examples": ["B", "C#", "F", "A", "D"], }, { "name": "mode", "column_name": "mode", "type": "string", "description": "The mode of the track (eg, Major, Minor). Cast the value as a string.", "examples": ["Major", "Minor"], }, { "name": "danceability", "column_name": "danceability_%", "type": "integer", "description": "The danceability percentage of the track. Cast the value as an integer.", "examples": [80, 71, 51, 55, 65], }, { "name": "valence", "column_name": "valence_%", "type": "integer", "description": "The valence percentage of the track. Cast the value as an integer.", "examples": [89, 61, 32, 58, 23], }, { "name": "energy", "column_name": "energy_%", "type": "integer", "description": "The energy percentage of the track. Cast the value as an integer.", "examples": [83, 74, 53, 72, 80], }, { "name": "acousticness", "column_name": "acousticness_%", "type": "integer", "description": "The acousticness percentage of the track. Cast the value as an integer.", "examples": [31, 7, 17, 11, 14], }, { "name": "instrumentalness", "column_name": "instrumentalness_%", "type": "integer", "description": "The instrumentalness percentage of the track. Cast the value as an integer.", "examples": [0, 63, 17, 2, 19], }, { "name": "liveness", "column_name": "liveness_%", "type": "integer", "description": "The liveness percentage of the track. Cast the value as an integer.", "examples": [8, 10, 31, 11, 28], }, { "name": "speechiness", "column_name": "speechiness_%", "type": "integer", "description": "The speechiness percentage of the track. Cast the value as an integer.", "examples": [4, 6, 15, 24, 3], }, { "name": "coverUrl", "column_name": "cover_url", "type": "string", "description": "The URL of the track's cover image. If the value is 'Not Found', it should be cast as an empty string.", "examples": [ "https://i.scdn.co/image/ab67616d0000b2730656d5ce813ca3cc4b677e05", "https://i.scdn.co/image/ab67616d0000b273e85259a1cae29a8d91f2093d", ], }, ], }, { "title": "Artist", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "artist(s)_name", "type": "string", "description": "The name of the artist. Split values in column by a comma", "examples": [ "Latto", "Jung Kook", "Myke Towers", "Olivia Rodrigo", "Taylor Swift", "Bad Bunny", ], } ], }, { "title": "PERFORMED_BY", "type": "object", "description": "Relationship", "properties": [ { "name": "_from", "type": "string", "description": "The label of the node this relationship starts at", "examples": ["Track"], }, { "name": "_to", "type": "string", "description": "The label of the node this relationship ends at", "examples": ["Artist"], }, ], }, ]

Додавање јединствених идентификатора

Приметио сам да шема не садржи никакве јединствене идентификаторе и то може постати проблем када је у питању увоз односа. Разумљиво је да би различити извођачи објављивали песме са истим именом , а два извођача могу имати исто име.


Из тог разлога, било је важно направити идентификатор за стазе како би се могли разликовати у оквиру већег скупа података:


 # Add primary key/unique identifiers uid_prompt = PromptTemplate.from_template(""" You are a graph database expert reviewing a single entity from a data model generated by a colleague. You want to ensure that all of the nodes imported into the database are unique. ## Example A schema contains Actors with a number of properties including name, date of birth. Two actors may have the same name then add a new compound property combining the name and date of birth. If combining values, include the instruction to convert the value to slug case. Call the new property 'id'. If you have identified a new property, add it to the list of properties leaving the rest intact. Include in the description the fields that are to be concatenated. ## Example Output Here is an example of a good output: {example_output} ## Current Entity Schema {entity} """, partial_variables=dict(example_output=dumps(example_output))) uid_chain = uid_prompt | llm.with_structured_output(JSONSchemaSpecification)


Овај корак је заиста потребан само за чворове, тако да сам издвојио чворове из шеме, покренуо ланац за сваки и затим комбиновао односе са ажурираним дефиницијама:


 # extract nodes and relationships nodes = [n for n in existing_model if "node" in n["description"].lower()] rels = [n for n in existing_model if "node" not in n["description"].lower()] # generate a unique id for nodes with_uids = [] for entity in nodes: res = uid_chain.invoke(dict(entity=dumps(entity))) json = loads(res.jsonschema) with_uids = with_uids + json if type(json) == list else with_uids + [json] # combine nodes and relationships with_uids = with_uids + rels

Преглед модела података

За здрав разум, вреди проверити модел за оптимизације. Модел_промпт је добро идентификовао именице и глаголе, али у сложенијем моделу.


Једна итерација је третирала колоне *_плаилистс и _цхартс као ИД-ове и покушала је да креира стрим чворове и односе ИН_ПЛАИЛИСТ. Претпостављам да је то због броја преко 1.000 укључујући форматирање са зарезом (нпр. 1.001).


Лепа идеја, али можда мало превише паметна. Али ово показује колико је важно имати човека у петљи који разуме структуру података.


 # Add primary key/unique identifiers review_prompt = PromptTemplate.from_template(""" You are a graph database expert reviewing a data model generated by a colleague. Your task is to review the data model and ensure that it is fit for purpose. Check for: ## Check for nested objects Remember that Neo4j cannot store arrays of objects or nested objects. These must be converted into into separate nodes with relationships between them. You must include the new node and a reference to the relationship to the output schema. ## Check for Entities in properties If there is a property that represents an array of IDs, a new node should be created for that entity. You must include the new node and a reference to the relationship to the output schema. # Keep Instructions Ensure that the instructions for the nodes, relationships, and properties are clear and concise. You may improve them but the detail must not be removed in any circumstances. ## Current Entity Schema {entity} """) review_chain = review_prompt | llm.with_structured_output(JSONSchemaSpecification) review_nodes = [n for n in with_uids if "node" in n["description"].lower() ] review_rels = [n for n in with_uids if "node" not in n["description"].lower() ] reviewed = [] for entity in review_nodes: res = review_chain.invoke(dict(entity=dumps(entity))) json = loads(res.jsonschema) reviewed = reviewed + json # add relationships back in reviewed = reviewed + review_rels len(reviewed) reviewed = with_uids


У стварном сценарију, желео бих да ово покренем неколико пута да бих итеративно побољшао модел података. Поставио бих максимално ограничење, а затим бих поновио до те тачке или се објекат модела података више не мења.

Генеришите изјаве о увозу

До овог тренутка, шема би требало да буде довољно робусна и да укључује што је могуће више информација како би омогућила ЛЛМ-у да генерише скуп скрипти за увоз.


У складу са Нео4ј препорукама за увоз података , датотеку треба обрадити неколико пута, сваки пут увозећи један чвор или однос како би се избегле жељне операције и закључавање.


 import_prompt = PromptTemplate.from_template(""" Based on the data model, write a Cypher statement to import the following data from a CSV file into Neo4j. Do not use LOAD CSV as this data will be imported using the Neo4j Python Driver, use UNWIND on the $rows parameter instead. You are writing a multi-pass import process, so concentrate on the entity mentioned. When importing data, you must use the following guidelines: * follow the instructions in the description when identifying primary keys. * Use the instructions in the description to determine the format of properties when a finding. * When combining fields into an ID, use the apoc.text.slug function to convert any text to slug case and toLower to convert the string to lowercase - apoc.text.slug(toLower(row.`name`)) * If you split a property, convert it to a string and use the trim function to remove any whitespace - trim(toString(row.`name`)) * When combining properties, wrap each property in the coalesce function so the property is not null if one of the values is not set - coalesce(row.`id`, '') + '--'+ coalsece(row.`title`) * Use the `column_name` field to map the CSV column to the property in the data model. * Wrap all column names from the CSV in backticks - for example row.`column_name`. * When you merge nodes, merge on the unique identifier and nothing else. All other properties should be set using `SET`. * Do not use apoc.periodic.iterate, the files will be batched in the application. Data Model: {data_model} Current Entity: {entity} """)


Овај ланац захтева другачији излазни објекат од претходних корака. У овом случају, члан шифре је најважнији, али сам такође желео да укључим кључ ланца_оф_мисли да бих подстакао ланац мисли:


 class CypherOutputSpecification(BaseModel): chain_of_thought: str = Field(description="Any reasoning used to write the Cypher statement") cypher: str = Field(description="The Cypher statement to import the data") notes: Optional[str] = Field(description="Any notes or closing remarks about the Cypher statement") import_chain = import_prompt | llm.with_structured_output(CypherOutputSpecification)


Исти процес се затим примењује за понављање сваке од прегледаних дефиниција и генерисање шифре:


 import_cypher = [] for n in reviewed: print('\n\n------', n['title']) res = import_chain.invoke(dict( data_model=dumps(reviewed), entity=n )) import_cypher.append(( res.cypher )) print(res.cypher)


Излаз конзоле:


 ------ Track UNWIND $rows AS row MERGE (t:Track {id: apoc.text.slug(toLower(coalesce(row.`track_name`, '') + '-' + coalesce(row.`released_year`, '')))}) SET t.name = trim(toString(row.`track_name`)), t.artist_count = toInteger(row.`artist_count`), t.released_year = toInteger(row.`released_year`), t.released_month = toInteger(row.`released_month`), t.released_day = toInteger(row.`released_day`), t.inSpotifyPlaylists = toInteger(row.`in_spotify_playlists`), t.inSpotifyCharts = toInteger(row.`in_spotify_charts`), t.streams = row.`streams`, t.inApplePlaylists = toInteger(row.`in_apple_playlists`), t.inAppleCharts = toInteger(row.`in_apple_charts`), t.inDeezerPlaylists = row.`in_deezer_playlists`, t.inDeezerCharts = toInteger(row.`in_deezer_charts`), t.inShazamCharts = row.`in_shazam_charts`, t.bpm = toInteger(row.`bpm`), t.key = trim(toString(row.`key`)), t.mode = trim(toString(row.`mode`)), t.danceability = toInteger(row.`danceability_%`), t.valence = toInteger(row.`valence_%`), t.energy = toInteger(row.`energy_%`), t.acousticness = toInteger(row.`acousticness_%`), t.instrumentalness = toInteger(row.`instrumentalness_%`), t.liveness = toInteger(row.`liveness_%`), t.speechiness = toInteger(row.`speechiness_%`), t.coverUrl = CASE row.`cover_url` WHEN 'Not Found' THEN '' ELSE trim(toString(row.`cover_url`)) END ------ Artist UNWIND $rows AS row WITH row, split(row.`artist(s)_name`, ',') AS artistNames UNWIND artistNames AS artistName MERGE (a:Artist {id: apoc.text.slug(toLower(trim(artistName)))}) SET a.name = trim(artistName) ------ PERFORMED_BY UNWIND $rows AS row UNWIND split(row.`artist(s)_name`, ',') AS artist_name MERGE (t:Track {id: apoc.text.slug(toLower(row.`track_name`)) + '-' + trim(toString(row.`released_year`))}) MERGE (a:Artist {id: apoc.text.slug(toLower(trim(artist_name)))}) MERGE (t)-[:PERFORMED_BY]->(a)


За овај упит је било потребно мало инжењеринга да би се постигли доследни резултати:


  • Понекад би Ципхер укључио наредбу МЕРГЕ са више дефинисаних поља, што је у најбољем случају субоптимално. Ако је нека од колона нулл, цео увоз неће успети.
  • Понекад би резултат укључивао апоц.период.итерате , који више није потребан, и желео сам код који бих могао да извршим са Питхон драјвером.
  • Морао сам да поновим да се наведено име колоне треба користити приликом креирања односа.
  • ЛЛМ једноставно није хтео да прати упутства када користи јединствени идентификатор на чворовима на сваком крају везе, тако да је било потребно неколико покушаја да га натерамо да прати упутства у опису. Било је нешто напред-назад између овог упита и модел_промпт.
  • Повратак је био потребан за називе колона које су укључивале посебне знакове (нпр. енергија_%).


Такође би било корисно поделити ово на два упита — један за чворове и један за односе. Али то је задатак за други дан.

Креирајте јединствена ограничења

Затим, скрипте за увоз се могу користити као основа за креирање јединствених ограничења у бази података:


 constraint_prompt = PromptTemplate.from_template(""" You are an expert graph database administrator. Use the following Cypher statement to write a Cypher statement to create unique constraints on any properties used in a MERGE statement. The correct syntax for a unique constraint is: CREATE CONSTRAINT movie_title_id IF NOT EXISTS FOR (m:Movie) REQUIRE m.title IS UNIQUE; Cypher: {cypher} """) constraint_chain = constraint_prompt | llm.with_structured_output(CypherOutputSpecification) constraint_queries = [] for statement in import_cypher: res = constraint_chain.invoke(dict(cypher=statement)) statements = res.cypher.split(";") for cypher in statements: constraint_queries.append(cypher)


Излаз конзоле:


 CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT stream_id IF NOT EXISTS FOR (s:Stream) REQUIRE s.id IS UNIQUE CREATE CONSTRAINT playlist_id IF NOT EXISTS FOR (p:Playlist) REQUIRE p.id IS UNIQUE CREATE CONSTRAINT chart_id IF NOT EXISTS FOR (c:Chart) REQUIRE c.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT stream_id_unique IF NOT EXISTS FOR (s:Stream) REQUIRE s.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT playlist_id_unique IF NOT EXISTS FOR (p:Playlist) REQUIRE p.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (track:Track) REQUIRE track.id IS UNIQUE CREATE CONSTRAINT chart_id_unique IF NOT EXISTS FOR (chart:Chart) REQUIRE chart.id IS UNIQUE


Понекад би ова промпт вратила исказе за индексе и ограничења, због чега би се подела на тачку и зарезу.

Покрените увоз

Пошто је све на месту, дошло је време да се изврше етхе Ципхер изјаве:


 from os import getenv from neo4j import GraphDatabase driver = GraphDatabase.driver( getenv("NEO4J_URI"), auth=( getenv("NEO4J_USERNAME"), getenv("NEO4J_PASSWORD") ) ) with driver.session() as session: # truncate the db session.run("MATCH (n) DETACH DELETE n") # create constraints for q in constraint_queries: if q.strip() != "": session.run(q) # import the data for q in import_cypher: if q.strip() != "": res = session.run(q, rows=rows).consume() print(q) print(res.counters)

КА на скупу података

Овај пост не би био потпун без неког КА скупа података који користи ГрапхЦипхерКАЦхаин:


 from langchain.chains import GraphCypherQAChain from langchain_community.graphs import Neo4jGraph graph = Neo4jGraph( url=getenv("NEO4J_URI"), username=getenv("NEO4J_USERNAME"), password=getenv("NEO4J_PASSWORD"), enhanced_schema=True ) qa = GraphCypherQAChain.from_llm( llm, graph=graph, allow_dangerous_requests=True, verbose=True )

Најпопуларнији уметници

Ко су најпопуларнији уметници у бази података?


 qa.invoke({"query": "Who are the most popular artists?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (:Track)-[:PERFORMED_BY]->(a:Artist) RETURN a.name, COUNT(*) AS popularity ORDER BY popularity DESC LIMIT 10 Full Context: [{'a.name': 'Bad Bunny', 'popularity': 40}, {'a.name': 'Taylor Swift', 'popularity': 38}, {'a.name': 'The Weeknd', 'popularity': 36}, {'a.name': 'SZA', 'popularity': 23}, {'a.name': 'Kendrick Lamar', 'popularity': 23}, {'a.name': 'Feid', 'popularity': 21}, {'a.name': 'Drake', 'popularity': 19}, {'a.name': 'Harry Styles', 'popularity': 17}, {'a.name': 'Peso Pluma', 'popularity': 16}, {'a.name': '21 Savage', 'popularity': 14}] > Finished chain. { "query": "Who are the most popular artists?", "result": "Bad Bunny, Taylor Swift, and The Weeknd are the most popular artists." }


Чинило се да ЛЛМ процењује популарност у смислу броја нумера на којима је уметник био, а не њиховог укупног броја стримова.

Откуцаја у минути

Која нумера има највећи БПМ?


 qa.invoke({"query": "Which track has the highest BPM?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (t:Track) RETURN t ORDER BY t.bpm DESC LIMIT 1 Full Context: [{'t': {'id': 'seven-feat-latto-explicit-ver--2023'}}] > Finished chain. { "query": "Which track has the highest BPM?", "result": "I don't know the answer." }

Побољшање одзивника за генерисање шифре

У овом случају, Ципхер изгледа добро и тачан резултат је укључен у промпт, али гпт-4о није могао да протумачи одговор. Изгледа да би ЦИПХЕР_ГЕНЕРАТИОН_ПРОМПТ прослеђен ГрапхЦипхерКАЦхаин-у могао да уради са додатним упутствима како би имена колона била опширнија.


Увек користите опширна имена колона у Ципхер исказу користећи називе ознака и својстава. На пример, користите 'персон_наме' уместо 'наме'.


ГрапхЦипхерКАЦхаин са прилагођеним упитом:


 CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database. Instructions: Use only the provided relationship types and properties in the schema. Do not use any other relationship types or properties that are not provided. Schema: {schema} Note: Do not include any explanations or apologies in your responses. Do not respond to any questions that might ask anything else than for you to construct a Cypher statement. Do not include any text except the generated Cypher statement. Always use verbose column names in the Cypher statement using the label and property names. For example, use 'person_name' instead of 'name'. Include data from the immediate network around the node in the result to provide extra context. For example, include the Movie release year, a list of actors and their roles, or the director of a movie. When ordering by a property, add an `IS NOT NULL` check to ensure that only nodes with that property are returned. Examples: Here are a few examples of generated Cypher statements for particular questions: # How many people acted in Top Gun? MATCH (m:Movie {{name:"Top Gun"}}) RETURN COUNT { (m)<-[:ACTED_IN]-() } AS numberOfActors The question is: {question}""" CYPHER_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE ) qa = GraphCypherQAChain.from_llm( llm, graph=graph, allow_dangerous_requests=True, verbose=True, cypher_prompt=CYPHER_GENERATION_PROMPT, )

Песме које изводи већина извођача

Графови су одлични у враћању броја веза према типу и правцу.


 qa.invoke({"query": "Which tracks are performed by the most artists?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (t:Track) WITH t, COUNT { (t)-[:PERFORMED_BY]->(:Artist) } as artist_count WHERE artist_count IS NOT NULL RETURN t.id AS track_id, t.name AS track_name, artist_count ORDER BY artist_count DESC Full Context: [{'track_id': 'los-del-espacio-2023', 'track_name': 'Los del Espacio', 'artist_count': 8}, {'track_id': 'se-le-ve-2021', 'track_name': 'Se Le Ve', 'artist_count': 8}, {'track_id': 'we-don-t-talk-about-bruno-2021', 'track_name': "We Don't Talk About Bruno", 'artist_count': 7}, {'track_id': 'cayï-ï-la-noche-feat-cruz-cafunï-ï-abhir-hathi-bejo-el-ima--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'jhoome-jo-pathaan-2022', 'track_name': 'Jhoome Jo Pathaan', 'artist_count': 6}, {'track_id': 'besharam-rang-from-pathaan--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'nobody-like-u-from-turning-red--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'ultra-solo-remix-2022', 'track_name': 'ULTRA SOLO REMIX', 'artist_count': 5}, {'track_id': 'angel-pt-1-feat-jimin-of-bts-jvke-muni-long--2023', 'track_name': None, 'artist_count': 5}, {'track_id': 'link-up-metro-boomin-don-toliver-wizkid-feat-beam-toian-spider-verse-remix-spider-man-across-the-spider-verse--2023', 'track_name': None, 'artist_count': 5}] > Finished chain. { "query": "Which tracks are performed by the most artists?", "result": "The tracks \"Los del Espacio\" and \"Se Le Ve\" are performed by the most artists, with each track having 8 artists." }

Резиме

ЦСВ анализа и моделирање су временски најинтензивнији део. Генерисање би могло потрајати више од пет минута.


Сами трошкови су били прилично јефтини. За осам сати експериментисања, мора да сам послао стотине захтева и на крају сам потрошио око долар.


Било је неколико изазова да се дође до ове тачке:


  • Упутствима је било потребно неколико итерација да би се исправиле. Овај проблем би се могао превазићи финим подешавањем модела или пружањем неколико примера.
  • ЈСОН одговори из ГПТ-4о могу бити недоследни. Препоручено ми је јсон-репаир , што је било боље од покушаја да ЛЛМ потврди свој сопствени ЈСОН излаз.


Видим да овај приступ добро функционише у ЛангГрапх имплементацији где се операције изводе у низу, дајући ЛЛМ-у могућност да изгради и прецизира модел. Како нови модели буду објављени, они такође могу имати користи од финог подешавања.

Сазнајте више

Погледајте Искориштавање великих језичких модела уз Нео4ј за више информација о поједностављењу процеса креирања графикона знања помоћу ЛЛМ-а. Прочитајте Креирање Нео4ј ГрапхРАГ тока рада користећи ЛангЦхаин и ЛангГрапх за више информација о ЛангГрапх-у и Нео4ј-у. А да бисте сазнали више о фином подешавању, погледајте Графове знања и ЛЛМ: Фино подешавање вс .


Карактеристична слика: Графички модел приказује нумере са ПЕРФОРМЕД_БИ везама са извођачима. Фотографија аутора.


Да бисте сазнали више о овој теми, придружите нам се на НОДЕС 2024 7. новембра, нашој бесплатној виртуелној конференцији за програмере о интелигентним апликацијама, графиконима знања и вештачкој интелигенцији. Региструјте се сада!


L O A D I N G
. . . comments & more!

About Author

Neo4j HackerNoon profile picture
Neo4j@neo4j
Neo4j is the world's leading graph database, with native graph storage and processing..

ХАНГ ТАГС

ОВАЈ ЧЛАНАК ЈЕ ПРЕДСТАВЉЕН У...