paint-brush
Cómo transformar archivos CSV en gráficos con LLM: guía paso a pasopor@neo4j
Nueva Historia

Cómo transformar archivos CSV en gráficos con LLM: guía paso a paso

por Neo4j41m2024/10/29
Read on Terminal Reader

Demasiado Largo; Para Leer

Explore el uso de LLM para convertir archivos CSV en estructuras gráficas, mejorando el modelado de datos en Neo4j con un enfoque iterativo basado en indicaciones.
featured image - Cómo transformar archivos CSV en gráficos con LLM: guía paso a paso
Neo4j HackerNoon profile picture
0-item
1-item


¿Cómo se comportan los LLM cuando intentan crear gráficos a partir de archivos CSV planos?

Una gran parte de mi trabajo consiste en mejorar la experiencia de los usuarios con Neo4j. A menudo, introducir datos en Neo4j y modelarlos de manera eficiente es un desafío clave para los usuarios, especialmente en los primeros días. Si bien el modelo de datos inicial es importante y requiere reflexión, se puede refactorizar fácilmente para mejorar el rendimiento a medida que aumenta el tamaño de los datos o la cantidad de usuarios.


Por lo tanto, como desafío para mí mismo, pensé que podría ver si un LLM podría ayudar con el modelo de datos inicial. Al menos, demostraría cómo se conectan las cosas y le proporcionaría al usuario algunos resultados rápidos que puede mostrar a los demás.


Intuitivamente, sé que el modelado de datos es un proceso iterativo y que ciertos LLM pueden distraerse fácilmente con grandes cantidades de datos, por lo que esto presentó una buena oportunidad para usar LangGraph para trabajar en ciclos a través de los datos.


Vamos a sumergirnos en los motivos que hicieron que esto sucediera.

Fundamentos del modelado de gráficos

El curso Fundamentos de modelado de datos gráficos de GraphAcademy lo guía a través de los conceptos básicos del modelado de datos en un gráfico, pero como primer paso, uso las siguientes reglas generales:


  • Los sustantivos se convierten en etiquetas: describen lo que representa el nodo.
  • Los verbos se convierten en tipos de relación: describen cómo se conectan las cosas .
  • Todo lo demás se convierte en propiedades (particularmente los adverbios): tienes un nombre y puedes conducir un automóvil gris.


Los verbos también pueden ser nodos; puede que te alegre saber que una persona ha pedido un producto, pero ese modelo básico no te permite saber dónde y cuándo se pidió el producto. En este caso, el pedido se convierte en un nuevo nodo en el modelo.


Estoy seguro de que esto podría resumirse en un mensaje para crear un enfoque de disparo cero para el modelado de datos gráficos.

Un enfoque iterativo

Intenté hacer esto brevemente hace unos meses y descubrí que el modelo que estaba usando se distraía fácilmente al tratar con esquemas más grandes, y las indicaciones alcanzaban rápidamente los límites de tokens del LLM.


Pensé que esta vez probaría un enfoque iterativo, tomando las claves una a la vez. Esto debería ayudar a evitar distracciones porque el LLM solo necesita considerar un elemento a la vez.


El enfoque final utilizó los siguientes pasos:


  1. Cargue el archivo CSV en un marco de datos de Pandas.
  2. Analice cada columna del CSV y añádala a un modelo de datos basado libremente en el esquema JSON.
  3. Identifique y agregue los identificadores únicos que faltan para cada entidad.
  4. Revise el modelo de datos para comprobar su precisión.
  5. Genere declaraciones Cypher para importar los nodos y las relaciones.
  6. Genere las restricciones únicas que sustentan las declaraciones de importación.
  7. Crea las restricciones y ejecuta la importación.

Los datos

Eché un vistazo rápido a Kaggle en busca de un conjunto de datos interesante . El conjunto de datos que se destacó fue Spotify Most Streamed Songs .


 import pandas as pd csv_file = '/Users/adam/projects/datamodeller/data/spotify/spotify-most-streamed-songs.csv' df = pd.read_csv(csv_file) df.head() track_name artist(s)_name artist_count released_year released_month released_day in_spotify_playlists in_spotify_charts streams in_apple_playlists … key mode danceability_% valence_% energy_% acousticness_% instrumentalness_% liveness_% speechiness_% cover_url 0 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 2 2023 7 14 553 147 141381703 43 … B Major 80 89 83 31 0 8 4 Not Found 1 LALA Myke Towers 1 2023 3 23 1474 48 133716286 48 … C# Major 71 61 74 7 0 10 4 https://i.scdn.co/image/ab67616d0000b2730656d5… 2 vampire Olivia Rodrigo 1 2023 6 30 1397 113 140003974 94 … F Major 51 32 53 17 0 31 6 https://i.scdn.co/image/ab67616d0000b273e85259… 3 Cruel Summer Taylor Swift 1 2019 8 23 7858 100 800840817 116 … A Major 55 58 72 11 0 11 15 https://i.scdn.co/image/ab67616d0000b273e787cf… 4 WHERE SHE GOES Bad Bunny 1 2023 5 18 3133 50 303236322 84 … A Minor 65 23 80 14 63 11 6 https://i.scdn.co/image/ab67616d0000b273ab5c9c…


5 filas × 25 columnas


Es relativamente simple, pero puedo ver inmediatamente que debería haber relaciones entre las pistas y los artistas.


También hay que superar desafíos de limpieza de datos en términos de que los nombres de las columnas y los artistas sean valores separados por comas dentro de la columna artist(s)_name.

Cómo elegir un LLM

Realmente quería usar un LLM local para esto, pero descubrí desde el principio que Llama 3 no sería suficiente. En caso de duda, recurra a OpenAI:


 from langchain_core.prompts import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from typing import List from langchain_core.output_parsers import JsonOutputParser from langchain_openai import ChatOpenAI llm = ChatOpenAI(model="gpt-4o")

Creación de un modelo de datos

Utilicé un conjunto abreviado de instrucciones de modelado para crear el mensaje de modelado de datos. Tuve que diseñar el mensaje varias veces para obtener un resultado consistente.


El ejemplo de cero disparos funcionó relativamente bien, pero descubrí que el resultado era inconsistente. Definir una salida estructurada para almacenar la salida JSON realmente ayudó:


 class JSONSchemaSpecification(BaseModel): notes: str = Field(description="Any notes or comments about the schema") jsonschema: str = Field(description="A JSON array of JSON schema specifications that describe the entities in the data model")

Ejemplo de salida de pocos disparos

El JSON en sí también era inconsistente, por lo que terminé definiendo un esquema basado en el conjunto de datos de recomendaciones de películas.


Ejemplo de salida:


 example_output = [ dict( title="Person", type="object", description="Node", properties=[ dict(name="name", column_name="person_name", type="string", description="The name of the person", examples=["Tom Hanks"]), dict(name="date_of_birth", column_name="person_dob", type="date", description="The date of birth for the person", examples=["1987-06-05"]), dict(name="id", column_name="person_name, date_of_birth", type="string", description="The ID is a combination of name and date of birth to ensure uniqueness", examples=["tom-hanks-1987-06-05"]), ], ), dict( title="Director", type="object", description="Node", properties=[ dict(name="name", column_name="director_names", type="string", description="The name of the directors. Split values in column by a comma", examples=["Francis Ford Coppola"]), ], ), dict( title="Movie", type="object", description="Node", properties=[ dict(name="title", column_name="title", type="string", description="The title of the movie", examples=["Toy Story"]), dict(name="released", column_name="released", type="integer", description="The year the movie was released", examples=["1990"]), ], ), dict( title="ACTED_IN", type="object", description="Relationship", properties=[ dict(name="_from", column_name="od", type="string", description="Person found by the `id`. The ID is a combination of name and date of birth to ensure uniqueness", examples=["Person"]), dict(name="_to", column_name="title", type="string", description="The movie title", examples=["Movie"]), dict(name="roles", type="string", column_name="person_roles", description="The roles the person played in the movie", examples=["Woody"]), ], ), dict( title="DIRECTED", type="object", description="Relationship", properties=[ dict(name="_from", type="string", column_name="director_names", description="Director names are comma separated", examples=["Director"]), dict(name="_to", type="string", column_name="title", description="The label of the node this relationship ends at", examples=["Movie"]), ], ), ]


Tuve que desviarme del esquema JSON estricto y agregar el campo column_name a la salida para ayudar a que LLM generara el script de importación. Proporcionar ejemplos de descripciones también ayudó en este sentido; de lo contrario, las propiedades utilizadas en la cláusula MATCH eran inconsistentes.

La cadena

Aquí está el mensaje final:


 model_prompt = PromptTemplate.from_template(""" You are an expert Graph Database administrator. Your task is to design a data model based on the information provided from an existing data source. You must decide where the following column fits in with the existing data model. Consider: * Does the column represent an entity, for example a Person, Place, or Movie? If so, this should be a node in its own right. * Does the column represent a relationship between two entities? If so, this should be a relationship between two nodes. * Does the column represent an attribute of an entity or relationship? If so, this should be a property of a node or relationship. * Does the column represent a shared attribute that could be interesting to query through to find similar nodes, for example a Genre? If so, this should be a node in its own right. ## Instructions for Nodes * Node labels are generally nouns, for example Person, Place, or Movie * Node titles should be in UpperCamelCase ## Instructions for Relationships * Relationshops are generally verbs, for example ACTED_IN, DIRECTED, or PURCHASED * Examples of good relationships are (:Person)-[:ACTED_IN]->(:Movie) or (:Person)-[:PURCHASED]->(:Product) * Relationships should be in UPPER_SNAKE_CASE * Provide any specific instructions for the field in the description. For example, does the field contain a list of comma separated values or a single value? ## Instructions for Properties * Relationships should be in lowerPascalCase * Prefer the shorter name where possible, for example "person_id" and "personId" should simply be "id" * If you are changing the property name from the original field name, mention the column name in the description * Do not include examples for integer or date fields * Always include instructions on data preparation for the field. Does it need to be cast as a string or split into multiple fields on a delimiting value? * Property keys should be letters only, no numbers or special characters. ## Important! Consider the examples provided. Does any data preparation need to be done to ensure the data is in the correct format? You must include any information about data preparation in the description. ## Example Output Here is an example of a good output: {example_output} ## New Data: Key: {key} Data Type: {type} Example Values: {examples} ## Existing Data Model Here is the existing data model: {existing_model} ## Keep Existing Data Model Apply your changes to the existing data model but never remove any existing definitions. """, partial_variables=dict(example_output=dumps(example_output))) model_chain = model_prompt | llm.with_structured_output(JSONSchemaSpecification)


Ejecutando la cadena

Para actualizar iterativamente el modelo, iteré sobre las claves en el marco de datos y pasé cada clave, su tipo de datos y los primeros cinco valores únicos al mensaje:


 from json_repair import dumps, loads existing_model = {} for i, key in enumerate(df): print("\n", i, key) print("----------------") try: res = try_chain(model_chain, dict( existing_model=dumps(existing_model), key=key, type=df[key].dtype, examples=dumps(df[key].unique()[:5].tolist()) )) print(res.notes) existing_model = loads(res.jsonschema) print([n['title'] for n in existing_model]) except Exception as e: print(e) pass existing_model


Salida de consola:


 0 track_name ---------------- Adding 'track_name' to an existing data model. This represents a music track entity. ['Track'] 1 artist(s)_name ---------------- Adding a new column 'artist(s)_name' to the existing data model. This column represents multiple artists associated with tracks and should be modeled as a new node 'Artist' and a relationship 'PERFORMED_BY' from 'Track' to 'Artist'. ['Track', 'Artist', 'PERFORMED_BY'] 2 artist_count ---------------- Added artist_count as a property of Track node. This property indicates the number of artists performing in the track. ['Track', 'Artist', 'PERFORMED_BY'] 3 released_year ---------------- Add the released_year column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 4 released_month ---------------- Adding the 'released_month' column to the existing data model, considering it as an attribute of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 5 released_day ---------------- Added a new property 'released_day' to the 'Track' node to capture the day of the month a track was released. ['Track', 'Artist', 'PERFORMED_BY'] 6 in_spotify_playlists ---------------- Adding the new column 'in_spotify_playlists' to the existing data model as a property of the 'Track' node. ['Track', 'Artist', 'PERFORMED_BY'] 7 in_spotify_charts ---------------- Adding the 'in_spotify_charts' column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 8 streams ---------------- Adding a new column 'streams' to the existing data model, representing the number of streams for a track. ['Track', 'Artist', 'PERFORMED_BY'] 9 in_apple_playlists ---------------- Adding new column 'in_apple_playlists' to the existing data model ['Track', 'Artist', 'PERFORMED_BY'] 10 in_apple_charts ---------------- Adding 'in_apple_charts' as a property to the 'Track' node, representing the number of times the track appeared in the Apple charts. ['Track', 'Artist', 'PERFORMED_BY'] 11 in_deezer_playlists ---------------- Add 'in_deezer_playlists' to the existing data model for a music track database. ['Track', 'Artist', 'PERFORMED_BY'] 12 in_deezer_charts ---------------- Adding a new property 'inDeezerCharts' to the existing 'Track' node to represent the number of times the track appeared in Deezer charts. ['Track', 'Artist', 'PERFORMED_BY'] 13 in_shazam_charts ---------------- Adding new data 'in_shazam_charts' to the existing data model. This appears to be an attribute of the 'Track' node, indicating the number of times a track appeared in the Shazam charts. ['Track', 'Artist', 'PERFORMED_BY'] 14 bpm ---------------- Added bpm column as a property to the Track node as it represents a characteristic of the track. ['Track', 'Artist', 'PERFORMED_BY'] 15 key ---------------- Adding the 'key' column to the existing data model. The 'key' represents the musical key of a track, which is a shared attribute that can be interesting to query through to find similar tracks. ['Track', 'Artist', 'PERFORMED_BY'] 16 mode ---------------- Adding 'mode' to the existing data model. It represents a musical characteristic of a track, which is best captured as an attribute of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 17 danceability_% ---------------- Added 'danceability_%' to the existing data model as a property of the Track node. The field represents the danceability percentage of the track. ['Track', 'Artist', 'PERFORMED_BY'] 18 valence_% ---------------- Adding the valence percentage column to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 19 energy_% ---------------- Integration of the new column 'energy_%' into the existing data model. This column represents an attribute of the Track entity and should be added as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 20 acousticness_% ---------------- Adding acousticness_% to the existing data model as a property of the Track node. ['Track', 'Artist', 'PERFORMED_BY'] 21 instrumentalness_% ---------------- Adding the new column 'instrumentalness_%' to the existing Track node as it represents an attribute of the Track entity. ['Track', 'Artist', 'PERFORMED_BY'] 22 liveness_% ---------------- Adding the new column 'liveness_%' to the existing data model as an attribute of the Track node ['Track', 'Artist', 'PERFORMED_BY'] 23 speechiness_% ---------------- Adding the new column 'speechiness_%' to the existing data model as a property of the 'Track' node. ['Track', 'Artist', 'PERFORMED_BY'] 24 cover_url ---------------- Adding a new property 'cover_url' to the existing 'Track' node. This property represents the URL of the track's cover image. ['Track', 'Artist', 'PERFORMED_BY']


Después de algunos ajustes en el mensaje para manejar casos de uso, terminé con un modelo con el que estaba bastante satisfecho. El LLM había logrado determinar que el conjunto de datos constaba de Track, Artist y una relación PERFORMED_BY para conectar los dos:


 [ { "title": "Track", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "track_name", "type": "string", "description": "The name of the track", "examples": [ "Seven (feat. Latto) (Explicit Ver.)", "LALA", "vampire", "Cruel Summer", "WHERE SHE GOES", ], }, { "name": "artist_count", "column_name": "artist_count", "type": "integer", "description": "The number of artists performing in the track", "examples": [2, 1, 3, 8, 4], }, { "name": "released_year", "column_name": "released_year", "type": "integer", "description": "The year the track was released", "examples": [2023, 2019, 2022, 2013, 2014], }, { "name": "released_month", "column_name": "released_month", "type": "integer", "description": "The month the track was released", "examples": [7, 3, 6, 8, 5], }, { "name": "released_day", "column_name": "released_day", "type": "integer", "description": "The day of the month the track was released", "examples": [14, 23, 30, 18, 1], }, { "name": "inSpotifyPlaylists", "column_name": "in_spotify_playlists", "type": "integer", "description": "The number of Spotify playlists the track is in. Cast the value as an integer.", "examples": [553, 1474, 1397, 7858, 3133], }, { "name": "inSpotifyCharts", "column_name": "in_spotify_charts", "type": "integer", "description": "The number of times the track appeared in the Spotify charts. Cast the value as an integer.", "examples": [147, 48, 113, 100, 50], }, { "name": "streams", "column_name": "streams", "type": "array", "description": "The list of stream IDs for the track. Maintain the array format.", "examples": [ "141381703", "133716286", "140003974", "800840817", "303236322", ], }, { "name": "inApplePlaylists", "column_name": "in_apple_playlists", "type": "integer", "description": "The number of Apple playlists the track is in. Cast the value as an integer.", "examples": [43, 48, 94, 116, 84], }, { "name": "inAppleCharts", "column_name": "in_apple_charts", "type": "integer", "description": "The number of times the track appeared in the Apple charts. Cast the value as an integer.", "examples": [263, 126, 207, 133, 213], }, { "name": "inDeezerPlaylists", "column_name": "in_deezer_playlists", "type": "array", "description": "The list of Deezer playlist IDs the track is in. Maintain the array format.", "examples": ["45", "58", "91", "125", "87"], }, { "name": "inDeezerCharts", "column_name": "in_deezer_charts", "type": "integer", "description": "The number of times the track appeared in the Deezer charts. Cast the value as an integer.", "examples": [10, 14, 12, 15, 17], }, { "name": "inShazamCharts", "column_name": "in_shazam_charts", "type": "array", "description": "The list of Shazam chart IDs the track is in. Maintain the array format.", "examples": ["826", "382", "949", "548", "425"], }, { "name": "bpm", "column_name": "bpm", "type": "integer", "description": "The beats per minute of the track. Cast the value as an integer.", "examples": [125, 92, 138, 170, 144], }, { "name": "key", "column_name": "key", "type": "string", "description": "The musical key of the track. Cast the value as a string.", "examples": ["B", "C#", "F", "A", "D"], }, { "name": "mode", "column_name": "mode", "type": "string", "description": "The mode of the track (eg, Major, Minor). Cast the value as a string.", "examples": ["Major", "Minor"], }, { "name": "danceability", "column_name": "danceability_%", "type": "integer", "description": "The danceability percentage of the track. Cast the value as an integer.", "examples": [80, 71, 51, 55, 65], }, { "name": "valence", "column_name": "valence_%", "type": "integer", "description": "The valence percentage of the track. Cast the value as an integer.", "examples": [89, 61, 32, 58, 23], }, { "name": "energy", "column_name": "energy_%", "type": "integer", "description": "The energy percentage of the track. Cast the value as an integer.", "examples": [83, 74, 53, 72, 80], }, { "name": "acousticness", "column_name": "acousticness_%", "type": "integer", "description": "The acousticness percentage of the track. Cast the value as an integer.", "examples": [31, 7, 17, 11, 14], }, { "name": "instrumentalness", "column_name": "instrumentalness_%", "type": "integer", "description": "The instrumentalness percentage of the track. Cast the value as an integer.", "examples": [0, 63, 17, 2, 19], }, { "name": "liveness", "column_name": "liveness_%", "type": "integer", "description": "The liveness percentage of the track. Cast the value as an integer.", "examples": [8, 10, 31, 11, 28], }, { "name": "speechiness", "column_name": "speechiness_%", "type": "integer", "description": "The speechiness percentage of the track. Cast the value as an integer.", "examples": [4, 6, 15, 24, 3], }, { "name": "coverUrl", "column_name": "cover_url", "type": "string", "description": "The URL of the track's cover image. If the value is 'Not Found', it should be cast as an empty string.", "examples": [ "https://i.scdn.co/image/ab67616d0000b2730656d5ce813ca3cc4b677e05", "https://i.scdn.co/image/ab67616d0000b273e85259a1cae29a8d91f2093d", ], }, ], }, { "title": "Artist", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "artist(s)_name", "type": "string", "description": "The name of the artist. Split values in column by a comma", "examples": [ "Latto", "Jung Kook", "Myke Towers", "Olivia Rodrigo", "Taylor Swift", "Bad Bunny", ], } ], }, { "title": "PERFORMED_BY", "type": "object", "description": "Relationship", "properties": [ { "name": "_from", "type": "string", "description": "The label of the node this relationship starts at", "examples": ["Track"], }, { "name": "_to", "type": "string", "description": "The label of the node this relationship ends at", "examples": ["Artist"], }, ], }, ] [ { "title": "Track", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "track_name", "type": "string", "description": "The name of the track", "examples": [ "Seven (feat. Latto) (Explicit Ver.)", "LALA", "vampire", "Cruel Summer", "WHERE SHE GOES", ], }, { "name": "artist_count", "column_name": "artist_count", "type": "integer", "description": "The number of artists performing in the track", "examples": [2, 1, 3, 8, 4], }, { "name": "released_year", "column_name": "released_year", "type": "integer", "description": "The year the track was released", "examples": [2023, 2019, 2022, 2013, 2014], }, { "name": "released_month", "column_name": "released_month", "type": "integer", "description": "The month the track was released", "examples": [7, 3, 6, 8, 5], }, { "name": "released_day", "column_name": "released_day", "type": "integer", "description": "The day of the month the track was released", "examples": [14, 23, 30, 18, 1], }, { "name": "inSpotifyPlaylists", "column_name": "in_spotify_playlists", "type": "integer", "description": "The number of Spotify playlists the track is in. Cast the value as an integer.", "examples": [553, 1474, 1397, 7858, 3133], }, { "name": "inSpotifyCharts", "column_name": "in_spotify_charts", "type": "integer", "description": "The number of times the track appeared in the Spotify charts. Cast the value as an integer.", "examples": [147, 48, 113, 100, 50], }, { "name": "streams", "column_name": "streams", "type": "array", "description": "The list of stream IDs for the track. Maintain the array format.", "examples": [ "141381703", "133716286", "140003974", "800840817", "303236322", ], }, { "name": "inApplePlaylists", "column_name": "in_apple_playlists", "type": "integer", "description": "The number of Apple playlists the track is in. Cast the value as an integer.", "examples": [43, 48, 94, 116, 84], }, { "name": "inAppleCharts", "column_name": "in_apple_charts", "type": "integer", "description": "The number of times the track appeared in the Apple charts. Cast the value as an integer.", "examples": [263, 126, 207, 133, 213], }, { "name": "inDeezerPlaylists", "column_name": "in_deezer_playlists", "type": "array", "description": "The list of Deezer playlist IDs the track is in. Maintain the array format.", "examples": ["45", "58", "91", "125", "87"], }, { "name": "inDeezerCharts", "column_name": "in_deezer_charts", "type": "integer", "description": "The number of times the track appeared in the Deezer charts. Cast the value as an integer.", "examples": [10, 14, 12, 15, 17], }, { "name": "inShazamCharts", "column_name": "in_shazam_charts", "type": "array", "description": "The list of Shazam chart IDs the track is in. Maintain the array format.", "examples": ["826", "382", "949", "548", "425"], }, { "name": "bpm", "column_name": "bpm", "type": "integer", "description": "The beats per minute of the track. Cast the value as an integer.", "examples": [125, 92, 138, 170, 144], }, { "name": "key", "column_name": "key", "type": "string", "description": "The musical key of the track. Cast the value as a string.", "examples": ["B", "C#", "F", "A", "D"], }, { "name": "mode", "column_name": "mode", "type": "string", "description": "The mode of the track (eg, Major, Minor). Cast the value as a string.", "examples": ["Major", "Minor"], }, { "name": "danceability", "column_name": "danceability_%", "type": "integer", "description": "The danceability percentage of the track. Cast the value as an integer.", "examples": [80, 71, 51, 55, 65], }, { "name": "valence", "column_name": "valence_%", "type": "integer", "description": "The valence percentage of the track. Cast the value as an integer.", "examples": [89, 61, 32, 58, 23], }, { "name": "energy", "column_name": "energy_%", "type": "integer", "description": "The energy percentage of the track. Cast the value as an integer.", "examples": [83, 74, 53, 72, 80], }, { "name": "acousticness", "column_name": "acousticness_%", "type": "integer", "description": "The acousticness percentage of the track. Cast the value as an integer.", "examples": [31, 7, 17, 11, 14], }, { "name": "instrumentalness", "column_name": "instrumentalness_%", "type": "integer", "description": "The instrumentalness percentage of the track. Cast the value as an integer.", "examples": [0, 63, 17, 2, 19], }, { "name": "liveness", "column_name": "liveness_%", "type": "integer", "description": "The liveness percentage of the track. Cast the value as an integer.", "examples": [8, 10, 31, 11, 28], }, { "name": "speechiness", "column_name": "speechiness_%", "type": "integer", "description": "The speechiness percentage of the track. Cast the value as an integer.", "examples": [4, 6, 15, 24, 3], }, { "name": "coverUrl", "column_name": "cover_url", "type": "string", "description": "The URL of the track's cover image. If the value is 'Not Found', it should be cast as an empty string.", "examples": [ "https://i.scdn.co/image/ab67616d0000b2730656d5ce813ca3cc4b677e05", "https://i.scdn.co/image/ab67616d0000b273e85259a1cae29a8d91f2093d", ], }, ], }, { "title": "Artist", "type": "object", "description": "Node", "properties": [ { "name": "name", "column_name": "artist(s)_name", "type": "string", "description": "The name of the artist. Split values in column by a comma", "examples": [ "Latto", "Jung Kook", "Myke Towers", "Olivia Rodrigo", "Taylor Swift", "Bad Bunny", ], } ], }, { "title": "PERFORMED_BY", "type": "object", "description": "Relationship", "properties": [ { "name": "_from", "type": "string", "description": "The label of the node this relationship starts at", "examples": ["Track"], }, { "name": "_to", "type": "string", "description": "The label of the node this relationship ends at", "examples": ["Artist"], }, ], }, ]

Agregar identificadores únicos

Observé que el esquema no contenía ningún identificador único, y esto puede convertirse en un problema a la hora de importar relaciones. Es lógico que distintos artistas publiquen canciones con el mismo nombre y que dos artistas tengan el mismo nombre.


Por este motivo, era importante crear un identificador para las pistas para poder diferenciarlas dentro de un conjunto de datos más amplio:


 # Add primary key/unique identifiers uid_prompt = PromptTemplate.from_template(""" You are a graph database expert reviewing a single entity from a data model generated by a colleague. You want to ensure that all of the nodes imported into the database are unique. ## Example A schema contains Actors with a number of properties including name, date of birth. Two actors may have the same name then add a new compound property combining the name and date of birth. If combining values, include the instruction to convert the value to slug case. Call the new property 'id'. If you have identified a new property, add it to the list of properties leaving the rest intact. Include in the description the fields that are to be concatenated. ## Example Output Here is an example of a good output: {example_output} ## Current Entity Schema {entity} """, partial_variables=dict(example_output=dumps(example_output))) uid_chain = uid_prompt | llm.with_structured_output(JSONSchemaSpecification)


Este paso solo es realmente necesario para los nodos, por lo que extraje los nodos del esquema, ejecuté la cadena para cada uno y luego combiné las relaciones con las definiciones actualizadas:


 # extract nodes and relationships nodes = [n for n in existing_model if "node" in n["description"].lower()] rels = [n for n in existing_model if "node" not in n["description"].lower()] # generate a unique id for nodes with_uids = [] for entity in nodes: res = uid_chain.invoke(dict(entity=dumps(entity))) json = loads(res.jsonschema) with_uids = with_uids + json if type(json) == list else with_uids + [json] # combine nodes and relationships with_uids = with_uids + rels

Revisión del modelo de datos

Por razones de cordura, vale la pena revisar el modelo para ver si hay optimizaciones. El model_prompt hizo un buen trabajo al identificar los sustantivos y los verbos, pero en un modelo más complejo.


Una iteración trató las columnas *_playlists y _charts como identificadores e intentó crear nodos Stream y relaciones IN_PLAYLIST. Supongo que esto se debió al recuento de más de 1000, incluido el formato con una coma (por ejemplo, 1001).


Bonita idea, aunque quizá un poco demasiado ingeniosa. Pero esto demuestra la importancia de tener un ser humano involucrado que comprenda la estructura de los datos.


 # Add primary key/unique identifiers review_prompt = PromptTemplate.from_template(""" You are a graph database expert reviewing a data model generated by a colleague. Your task is to review the data model and ensure that it is fit for purpose. Check for: ## Check for nested objects Remember that Neo4j cannot store arrays of objects or nested objects. These must be converted into into separate nodes with relationships between them. You must include the new node and a reference to the relationship to the output schema. ## Check for Entities in properties If there is a property that represents an array of IDs, a new node should be created for that entity. You must include the new node and a reference to the relationship to the output schema. # Keep Instructions Ensure that the instructions for the nodes, relationships, and properties are clear and concise. You may improve them but the detail must not be removed in any circumstances. ## Current Entity Schema {entity} """) review_chain = review_prompt | llm.with_structured_output(JSONSchemaSpecification) review_nodes = [n for n in with_uids if "node" in n["description"].lower() ] review_rels = [n for n in with_uids if "node" not in n["description"].lower() ] reviewed = [] for entity in review_nodes: res = review_chain.invoke(dict(entity=dumps(entity))) json = loads(res.jsonschema) reviewed = reviewed + json # add relationships back in reviewed = reviewed + review_rels len(reviewed) reviewed = with_uids


En un escenario del mundo real, me gustaría ejecutar esto varias veces para mejorar iterativamente el modelo de datos. Establecería un límite máximo y luego iteraría hasta ese punto o el objeto del modelo de datos ya no cambiaría.

Generar declaraciones de importación

En este punto, el esquema debería ser lo suficientemente sólido e incluir la mayor cantidad de información posible para permitir que un LLM genere un conjunto de scripts de importación.


De acuerdo con las recomendaciones de importación de datos de Neo4j , el archivo debe procesarse varias veces, importando cada vez un solo nodo o relación para evitar operaciones ansiosas y bloqueos.


 import_prompt = PromptTemplate.from_template(""" Based on the data model, write a Cypher statement to import the following data from a CSV file into Neo4j. Do not use LOAD CSV as this data will be imported using the Neo4j Python Driver, use UNWIND on the $rows parameter instead. You are writing a multi-pass import process, so concentrate on the entity mentioned. When importing data, you must use the following guidelines: * follow the instructions in the description when identifying primary keys. * Use the instructions in the description to determine the format of properties when a finding. * When combining fields into an ID, use the apoc.text.slug function to convert any text to slug case and toLower to convert the string to lowercase - apoc.text.slug(toLower(row.`name`)) * If you split a property, convert it to a string and use the trim function to remove any whitespace - trim(toString(row.`name`)) * When combining properties, wrap each property in the coalesce function so the property is not null if one of the values is not set - coalesce(row.`id`, '') + '--'+ coalsece(row.`title`) * Use the `column_name` field to map the CSV column to the property in the data model. * Wrap all column names from the CSV in backticks - for example row.`column_name`. * When you merge nodes, merge on the unique identifier and nothing else. All other properties should be set using `SET`. * Do not use apoc.periodic.iterate, the files will be batched in the application. Data Model: {data_model} Current Entity: {entity} """)


Esta cadena requiere un objeto de salida diferente al de los pasos anteriores. En este caso, el miembro cypher es el más importante, pero también quería incluir una clave chain_of_thought para fomentar la cadena de pensamiento:


 class CypherOutputSpecification(BaseModel): chain_of_thought: str = Field(description="Any reasoning used to write the Cypher statement") cypher: str = Field(description="The Cypher statement to import the data") notes: Optional[str] = Field(description="Any notes or closing remarks about the Cypher statement") import_chain = import_prompt | llm.with_structured_output(CypherOutputSpecification)


Luego se aplica el mismo proceso para iterar sobre cada una de las definiciones revisadas y generar el Cypher:


 import_cypher = [] for n in reviewed: print('\n\n------', n['title']) res = import_chain.invoke(dict( data_model=dumps(reviewed), entity=n )) import_cypher.append(( res.cypher )) print(res.cypher)


Salida de consola:


 ------ Track UNWIND $rows AS row MERGE (t:Track {id: apoc.text.slug(toLower(coalesce(row.`track_name`, '') + '-' + coalesce(row.`released_year`, '')))}) SET t.name = trim(toString(row.`track_name`)), t.artist_count = toInteger(row.`artist_count`), t.released_year = toInteger(row.`released_year`), t.released_month = toInteger(row.`released_month`), t.released_day = toInteger(row.`released_day`), t.inSpotifyPlaylists = toInteger(row.`in_spotify_playlists`), t.inSpotifyCharts = toInteger(row.`in_spotify_charts`), t.streams = row.`streams`, t.inApplePlaylists = toInteger(row.`in_apple_playlists`), t.inAppleCharts = toInteger(row.`in_apple_charts`), t.inDeezerPlaylists = row.`in_deezer_playlists`, t.inDeezerCharts = toInteger(row.`in_deezer_charts`), t.inShazamCharts = row.`in_shazam_charts`, t.bpm = toInteger(row.`bpm`), t.key = trim(toString(row.`key`)), t.mode = trim(toString(row.`mode`)), t.danceability = toInteger(row.`danceability_%`), t.valence = toInteger(row.`valence_%`), t.energy = toInteger(row.`energy_%`), t.acousticness = toInteger(row.`acousticness_%`), t.instrumentalness = toInteger(row.`instrumentalness_%`), t.liveness = toInteger(row.`liveness_%`), t.speechiness = toInteger(row.`speechiness_%`), t.coverUrl = CASE row.`cover_url` WHEN 'Not Found' THEN '' ELSE trim(toString(row.`cover_url`)) END ------ Artist UNWIND $rows AS row WITH row, split(row.`artist(s)_name`, ',') AS artistNames UNWIND artistNames AS artistName MERGE (a:Artist {id: apoc.text.slug(toLower(trim(artistName)))}) SET a.name = trim(artistName) ------ PERFORMED_BY UNWIND $rows AS row UNWIND split(row.`artist(s)_name`, ',') AS artist_name MERGE (t:Track {id: apoc.text.slug(toLower(row.`track_name`)) + '-' + trim(toString(row.`released_year`))}) MERGE (a:Artist {id: apoc.text.slug(toLower(trim(artist_name)))}) MERGE (t)-[:PERFORMED_BY]->(a)


Esta indicación requirió algo de ingeniería para lograr resultados consistentes:


  • A veces, Cypher incluye una declaración MERGE con varios campos definidos, lo que, en el mejor de los casos, no es óptimo. Si alguna de las columnas es nula, la importación completa fallará.
  • A veces, el resultado incluiría apoc.period.iterate , que ya no es necesario, y quería código que pudiera ejecutar con el controlador Python.
  • Tuve que reiterar que el nombre de columna especificado debe usarse al crear relaciones.
  • El LLM simplemente no seguía las instrucciones al usar el identificador único en los nodos en cada extremo de la relación, por lo que se necesitaron varios intentos para lograr que siguiera las instrucciones en la descripción. Hubo algunas idas y venidas entre este mensaje y el mensaje model_prompt.
  • Se necesitaban comillas invertidas para los nombres de columnas que incluían caracteres especiales (por ejemplo, energy_%).


También sería beneficioso dividir esto en dos indicaciones: una para los nodos y otra para las relaciones. Pero esa es una tarea para otro día.

Crear las restricciones únicas

A continuación, los scripts de importación se pueden utilizar como base para crear restricciones únicas en la base de datos:


 constraint_prompt = PromptTemplate.from_template(""" You are an expert graph database administrator. Use the following Cypher statement to write a Cypher statement to create unique constraints on any properties used in a MERGE statement. The correct syntax for a unique constraint is: CREATE CONSTRAINT movie_title_id IF NOT EXISTS FOR (m:Movie) REQUIRE m.title IS UNIQUE; Cypher: {cypher} """) constraint_chain = constraint_prompt | llm.with_structured_output(CypherOutputSpecification) constraint_queries = [] for statement in import_cypher: res = constraint_chain.invoke(dict(cypher=statement)) statements = res.cypher.split(";") for cypher in statements: constraint_queries.append(cypher)


Salida de consola:


 CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT stream_id IF NOT EXISTS FOR (s:Stream) REQUIRE s.id IS UNIQUE CREATE CONSTRAINT playlist_id IF NOT EXISTS FOR (p:Playlist) REQUIRE p.id IS UNIQUE CREATE CONSTRAINT chart_id IF NOT EXISTS FOR (c:Chart) REQUIRE c.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT stream_id_unique IF NOT EXISTS FOR (s:Stream) REQUIRE s.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (t:Track) REQUIRE t.id IS UNIQUE CREATE CONSTRAINT playlist_id_unique IF NOT EXISTS FOR (p:Playlist) REQUIRE p.id IS UNIQUE CREATE CONSTRAINT track_id_unique IF NOT EXISTS FOR (track:Track) REQUIRE track.id IS UNIQUE CREATE CONSTRAINT chart_id_unique IF NOT EXISTS FOR (chart:Chart) REQUIRE chart.id IS UNIQUE


A veces, este mensaje podría devolver declaraciones para índices y restricciones, de ahí la división en el punto y coma.

Ejecutar la importación

Con todo en su lugar, llegó el momento de ejecutar las declaraciones de Cypher:


 from os import getenv from neo4j import GraphDatabase driver = GraphDatabase.driver( getenv("NEO4J_URI"), auth=( getenv("NEO4J_USERNAME"), getenv("NEO4J_PASSWORD") ) ) with driver.session() as session: # truncate the db session.run("MATCH (n) DETACH DELETE n") # create constraints for q in constraint_queries: if q.strip() != "": session.run(q) # import the data for q in import_cypher: if q.strip() != "": res = session.run(q, rows=rows).consume() print(q) print(res.counters)

Control de calidad del conjunto de datos

Esta publicación no estaría completa sin un poco de control de calidad sobre el conjunto de datos utilizando GraphCypherQAChain:


 from langchain.chains import GraphCypherQAChain from langchain_community.graphs import Neo4jGraph graph = Neo4jGraph( url=getenv("NEO4J_URI"), username=getenv("NEO4J_USERNAME"), password=getenv("NEO4J_PASSWORD"), enhanced_schema=True ) qa = GraphCypherQAChain.from_llm( llm, graph=graph, allow_dangerous_requests=True, verbose=True )

Artistas más populares

¿Quiénes son los artistas más populares en la base de datos?


 qa.invoke({"query": "Who are the most popular artists?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (:Track)-[:PERFORMED_BY]->(a:Artist) RETURN a.name, COUNT(*) AS popularity ORDER BY popularity DESC LIMIT 10 Full Context: [{'a.name': 'Bad Bunny', 'popularity': 40}, {'a.name': 'Taylor Swift', 'popularity': 38}, {'a.name': 'The Weeknd', 'popularity': 36}, {'a.name': 'SZA', 'popularity': 23}, {'a.name': 'Kendrick Lamar', 'popularity': 23}, {'a.name': 'Feid', 'popularity': 21}, {'a.name': 'Drake', 'popularity': 19}, {'a.name': 'Harry Styles', 'popularity': 17}, {'a.name': 'Peso Pluma', 'popularity': 16}, {'a.name': '21 Savage', 'popularity': 14}] > Finished chain. { "query": "Who are the most popular artists?", "result": "Bad Bunny, Taylor Swift, and The Weeknd are the most popular artists." }


El LLM pareció juzgar la popularidad en términos de la cantidad de canciones en las que participó un artista en lugar de su cantidad total de reproducciones.

Pulsaciones por minuto

¿Qué pista tiene el BPM más alto?


 qa.invoke({"query": "Which track has the highest BPM?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (t:Track) RETURN t ORDER BY t.bpm DESC LIMIT 1 Full Context: [{'t': {'id': 'seven-feat-latto-explicit-ver--2023'}}] > Finished chain. { "query": "Which track has the highest BPM?", "result": "I don't know the answer." }

Mejorar el indicador de generación de cifrado

En este caso, el código Cypher parece correcto y se incluyó el resultado correcto en el mensaje, pero gpt-4o no pudo interpretar la respuesta. Parece que el código CYPHER_GENERATION_PROMPT que se pasó a GraphCypherQAChain podría funcionar con instrucciones adicionales para que los nombres de las columnas sean más detallados.


Utilice siempre nombres de columna detallados en la declaración Cypher utilizando los nombres de etiqueta y propiedad. Por ejemplo, utilice "person_name" en lugar de "name".


GraphCypherQAChain con mensaje personalizado:


 CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database. Instructions: Use only the provided relationship types and properties in the schema. Do not use any other relationship types or properties that are not provided. Schema: {schema} Note: Do not include any explanations or apologies in your responses. Do not respond to any questions that might ask anything else than for you to construct a Cypher statement. Do not include any text except the generated Cypher statement. Always use verbose column names in the Cypher statement using the label and property names. For example, use 'person_name' instead of 'name'. Include data from the immediate network around the node in the result to provide extra context. For example, include the Movie release year, a list of actors and their roles, or the director of a movie. When ordering by a property, add an `IS NOT NULL` check to ensure that only nodes with that property are returned. Examples: Here are a few examples of generated Cypher statements for particular questions: # How many people acted in Top Gun? MATCH (m:Movie {{name:"Top Gun"}}) RETURN COUNT { (m)<-[:ACTED_IN]-() } AS numberOfActors The question is: {question}""" CYPHER_GENERATION_PROMPT = PromptTemplate( input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE ) qa = GraphCypherQAChain.from_llm( llm, graph=graph, allow_dangerous_requests=True, verbose=True, cypher_prompt=CYPHER_GENERATION_PROMPT, )

Pistas interpretadas por la mayoría de los artistas

Los gráficos son excelentes para devolver un recuento de la cantidad de relaciones por tipo y dirección.


 qa.invoke({"query": "Which tracks are performed by the most artists?"}) > Entering new GraphCypherQAChain chain... Generated Cypher: cypher MATCH (t:Track) WITH t, COUNT { (t)-[:PERFORMED_BY]->(:Artist) } as artist_count WHERE artist_count IS NOT NULL RETURN t.id AS track_id, t.name AS track_name, artist_count ORDER BY artist_count DESC Full Context: [{'track_id': 'los-del-espacio-2023', 'track_name': 'Los del Espacio', 'artist_count': 8}, {'track_id': 'se-le-ve-2021', 'track_name': 'Se Le Ve', 'artist_count': 8}, {'track_id': 'we-don-t-talk-about-bruno-2021', 'track_name': "We Don't Talk About Bruno", 'artist_count': 7}, {'track_id': 'cayï-ï-la-noche-feat-cruz-cafunï-ï-abhir-hathi-bejo-el-ima--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'jhoome-jo-pathaan-2022', 'track_name': 'Jhoome Jo Pathaan', 'artist_count': 6}, {'track_id': 'besharam-rang-from-pathaan--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'nobody-like-u-from-turning-red--2022', 'track_name': None, 'artist_count': 6}, {'track_id': 'ultra-solo-remix-2022', 'track_name': 'ULTRA SOLO REMIX', 'artist_count': 5}, {'track_id': 'angel-pt-1-feat-jimin-of-bts-jvke-muni-long--2023', 'track_name': None, 'artist_count': 5}, {'track_id': 'link-up-metro-boomin-don-toliver-wizkid-feat-beam-toian-spider-verse-remix-spider-man-across-the-spider-verse--2023', 'track_name': None, 'artist_count': 5}] > Finished chain. { "query": "Which tracks are performed by the most artists?", "result": "The tracks \"Los del Espacio\" and \"Se Le Ve\" are performed by the most artists, with each track having 8 artists." }

Resumen

El análisis y el modelado de CSV es la parte que requiere más tiempo. Su generación puede llevar más de cinco minutos.


Los costos en sí mismos fueron bastante bajos. En ocho horas de experimentación, debo haber enviado cientos de solicitudes y terminé gastando aproximadamente un dólar.


Para llegar a este punto hubo que afrontar varios retos:


  • Las indicaciones necesitaron varias iteraciones para que quedaran bien. Este problema se podría solucionar ajustando el modelo o proporcionando algunos ejemplos.
  • Las respuestas JSON de GPT-4o pueden ser inconsistentes. Me recomendaron json-repair , que era mejor que intentar que el LLM validara su propia salida JSON.


Creo que este enfoque funciona bien en una implementación de LangGraph donde las operaciones se ejecutan en secuencia, lo que le da a un LLM la capacidad de crear y refinar el modelo. A medida que se lanzan nuevos modelos, también pueden beneficiarse de un ajuste fino.

Más información

Consulta Aprovechar modelos de lenguaje grandes con Neo4j para obtener más información sobre cómo optimizar el proceso de creación de gráficos de conocimiento con LLM. Lee Crear un flujo de trabajo GraphRAG de Neo4j con LangChain y LangGraph para obtener más información sobre LangGraph y Neo4j. Y para obtener más información sobre el ajuste fino, consulta Gráficos de conocimiento y LLM: ajuste fino frente a generación aumentada por recuperación .


Imagen destacada: El modelo gráfico muestra las pistas con relaciones PERFORMED_BY con los artistas. Foto del autor.


Para obtener más información sobre este tema, únase a nosotros en NODES 2024 el 7 de noviembre, nuestra conferencia virtual gratuita para desarrolladores sobre aplicaciones inteligentes, gráficos de conocimiento e IA. ¡Regístrese ahora!