大規模言語モデル (LLM) の永続的な課題は、予測できない出力を生成する傾向があることです。慎重に作成されたプロンプトにもかかわらず、LLM は期待から外れることが多く、出力を再利用したりワークフローに統合したりすることが困難になります。さらに悪いことに、結果が再現できないことが多く、下流の処理が複雑になります。
このブログ記事では、タスクを実行する前にソリューションの JSON スキーマを動的に生成する手法である構造化メタプロンプトについて説明します。これにより、再利用性、信頼性、予測可能性が向上します。
最新の LLM のほとんどは JSON 出力モードを提供していますが、結果が必ずしも期待されるスキーマに準拠するとは限りません。開発者は多くの場合、チェックと再試行のメカニズムに頼りますが、これは時間がかかり、コストがかかり、ユーザー エクスペリエンスを損なう傾向があります。
OpenAI はgpt4o
で構造化出力を導入し、出力がユーザー提供の JSON スキーマに準拠することを保証します。正確な詳細は公開されていませんが、これは制約付きデコードと事前サンプル ロジット バイアスの組み合わせによって実現される可能性があります。同様の機能は、ガイダンス、アウトライン、反転、CommandR、SGLang などの他のツールでも提供されています。これらのアプローチにより、開発者は出力を JSON スキーマに導くことができますが、それぞれに固有のトレードオフがあります。
構造化メタプロンプトとは、LLM を使用して、解決策を作成する前に問題の構造化された説明を動的に作成する手法です。この方法には、直接プロンプトに比べていくつかの利点があります。
構造化されたメタプロンプトを使用して、新しいベストセラーのスパイ スリラー小説のアウトラインを作成する例を見てみましょう。
Colab SecretsにOPENAI_API_KEY
設定してください
最初のステップは、目的の出力を記述する JSON スキーマを定義することです。これを行うには、JSON スキーマ用の JSON スキーマ (実質的にはメタスキーマ)を作成します。これは仕様の一部として提供されていますが、いくつか変更を加える必要があります。
OpenAI と Cohere の構造化出力 API は、標準の JSON スキーマにいくつかの制限を課します。これは非常に残念なことですが、今のところは回避できます。互換性を確保するためにメタスキーマを微調整します。
from jsonschema import Draft202012Validator def openai_compatible_metaschema(schema: Dict[str, object]): schema["type"] = "object" del schema["allOf"] return schema openai_json_metaschema = openai_compatible_metaschema( copy.deepcopy(Draft202012Validator.META_SCHEMA) )
注*: どうやら*反転にはそのような制限はなく、任意の JSON スキーマをサポートしていますが、まだパブリック アクセスはありません。
次に、結果の JSON スキーマが OpenAI の制約に準拠していることを確認するために、プロンプトにガイドラインを組み込みます。たとえば、次のようになります。
"additionalProperties": false
)。 system_guidelines = "\n".join( [ "All fields must be required - To use Structured Outputs, all fields or function parameters must be specified as required. NOTE: Although all fields must be required (and the model will return a value for each parameter), it is possible to emulate an optional parameter by using a union type with null." "Objects have limitations on nesting depth and size - A schema may have up to 100 object properties total, with up to 5 levels of nesting.", "Limitations on total string size - In a schema, total string length of all property names, definition names, enum values, and const values cannot exceed 15,000 characters.", "Limitations on enum size - A schema may have up to 500 enum values across all enum properties. For a single enum property with string values, the total string length of all enum values cannot exceed 7,500 characters when there are more than 250 enum values.", "additionalProperties: false must always be set in objects - additionalProperties controls whether it is allowable for an object to contain additional keys / values that were not defined in the JSON Schema. Structured Outputs only supports generating specified keys / values, so we require developers to set additionalProperties: false to opt into Structured Outputs.", "Some type-specific keywords are not yet supported - Notable keywords not supported include: For strings: minLength, maxLength, pattern, format; For numbers: minimum, maximum, multipleOf; For objects: patternProperties, unevaluatedProperties, propertyNames, minProperties, maxProperties; For arrays: unevaluatedItems, contains, minContains, maxContains, minItems, maxItems, uniqueItems", "For anyOf, the nested schemas must each be a valid JSON Schema per this subset", "Definitions are supported - You can use definitions to define subschemas which are referenced throughout your schema. The following is a simple example.", "Recursive schemas are supported - Sample recursive schema using # to indicate root recursion.", ] )
スパイスリラーのアウトラインのJSONスキーマを生成するためのメタプロンプトを定義します。
from langchain.prompts import ChatPromptTemplate task_description = "Write an outline for a bestselling spy thriller novel" task_guidelines = """ - You must follow one of the six basic story arcs: Rags to riches, Riches to rags, Icarus, Oedipus, Cinderella, Man in a hole - Outputs must include characters, plot points (including exposition, rising action, climax, falling action, and resolution), central conflict, setting, major turning points or "beats," character arcs, and a synopsis of the story; essentially, a detailed breakdown of the key elements that will drive the narrative throughout the novel. """ prompt_messages = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert in creating JSON schemas. You have been asked to generate a detailed JSON schema for the output of a given task based based on a task desciption and some guidelines.", ), ( "system", "Your JSON schema must always adhere to the following system system guidelines for JSON schemas:\n<system_guidelines>\n{system_guidelines}\n</system_guidelines>", ), ( "user", "Use the task description and guidelines below to generate an output JSON schema for the following task based on the guidelines provided.\n\n<task_description>\n{task_description}\n</task_description>\n\n<guidelines>\n{task_guidelines}\n</guidelines>", ), ] )
スキーマを作成するには、LLM を呼び出します。
messages = prompt_messages.format_messages( system_guidelines=system_guidelines, task_description=task_description, task_guidelines=task_guidelines ) ## Make sure to set up OPENAI_API_KEY in your Colab Secrets ## https://x.com/GoogleColab/status/1719798406195867814 client = OpenAI(api_key=userdata.get('OPENAI_API_KEY')) model = "gpt-4o" metaprompt_completion = client.beta.chat.completions.parse( model=model, messages=convert_to_penai_messages(messages), response_format={ "type": "json_schema", "json_schema": JSONSchema( name="JsonMetaschema", description="JSON Metaschema for the 2020-12 Draft of the JSON Schema specification that can be used to validate JSON data", schema=openai_json_metaschema, strict=False, ) } ) task_output_schema = json.loads(metaprompt_completion.choices[0].message.content) print(json.dumps(task_output_schema, indent=2))
{ "$schema": "https://json-schema.org/draft/2020-12/schema", "title": "Outline for a Bestselling Spy Thriller Novel", "type": "object", "properties": { "storyArc": { "type": "string", "enum": [ "Rags to riches", "Riches to rags", "Icarus", "Oedipus", "Cinderella", "Man in a hole" ] }, "characters": { "type": "array", "items": { "type": "object", "properties": { "name": { "type": "string" }, "role": { "type": "string" }, "description": { "type": "string" }, "arc": { "type": "string" } }, "required": ["name", "role", "description", "arc"], "additionalProperties": false }, "minItems": 1 }, "plotPoints": { "type": "object", "properties": { "exposition": { "type": "string" }, "risingAction": { "type": "string" }, "climax": { "type": "string" }, "fallingAction": { "type": "string" }, "resolution": { "type": "string" } }, "required": [ "exposition", "risingAction", "climax", "fallingAction", "resolution" ], "additionalProperties": false }, "centralConflict": { "type": "string" }, "setting": { "type": "string" }, "majorTurningPoints": { "type": "array", "items": { "type": "string" }, "minItems": 1 }, "characterArcs": { "type": "object", "properties": { "protagonistArc": { "type": "string" }, "antagonistArc": { "type": "string" }, "supportingCharactersArcs": { "type": "array", "items": { "type": "string" }, "minItems": 0 } }, "required": [ "protagonistArc", "antagonistArc", "supportingCharactersArcs" ], "additionalProperties": false }, "synopsis": { "type": "string" } }, "required": [ "storyArc", "characters", "plotPoints", "centralConflict", "setting", "majorTurningPoints", "characterArcs", "synopsis" ], "additionalProperties": false }
これで、スパイ スリラー小説のアウトラインを記述するスキーマができました。これは、ファイルまたはデータベースに保存できます。
スキーマを使用して、小説のアウトラインのプロンプトを定義します。いくつかの基本的なロールプレイのプロンプトとガイドラインを使用します。
user_requirements = "Tell a story about counter-intelligence operative working against the clock. The novel should be extremely realistic, slow burn." task_prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a world-renowned author that has written dozens of bestselling thriller novels. Your task is to create an outline for a new novel based on the user's requirements.", ), ( "user", "Please write a novel outline based strictly on the following requirements <requirements>{requirements}</requirements>", ), ] ) task_completion = client.beta.chat.completions.parse( model=model, messages=convert_to_openai_messages(task_prompt.format_messages(requirements=user_requirements)), response_format={ "type": "json_schema", "json_schema": JSONSchema( ## TODO: You can change this depending your task name="ThrillerNovelOutlineSchema", description="A schema for outlining a new novel", schema=task_output_schema, strict=False, ) } ) task_result = json.loads(task_completion.choices[0].message.content)
次のスパイ スリラーの概要は次のとおりです。
{ "storyArc": "Cinderella", "synopsis": "In 'The Clockwork Veil', Ethan Cross, a savvy counter-intelligence operative, is thrust into a high-pressure scenario where leaked documents threaten national integrity. As he races against time to unmask a mole within the agency, Ethan confronts his personal fears and the boundaries of the meticulous strategies he's known for. This slow-burn thriller follows Ethan's transformation in a world where every second could spell disaster, culminating in a showdown with Lena Grey\u2014a former ally who has turned the clockwork of espionage into her personal vendetta. Through grit and cunning, Ethan must adapt his methods, realizing that in the world of espionage, the most powerful weapon is a well-timed intuition.", "characters": [ { "name": "Ethan Cross", "role": "Protagonist", "description": "A meticulous and resourceful counter-intelligence operative known for his analytical mind and calm demeanor under pressure.", "arc": "Ethan transforms from a methodical planner to a decisive action-taker as he confronts his personal fears and realizes the importance of instinct." }, { "name": "Lena Grey", "role": "Antagonist", "description": "A brilliant but disillusioned former operative now turned mole, seeking vengeance against the agency she believes wronged her.", "arc": "Lena starts with a single-minded focus on revenge but gradually becomes conflicted as old loyalties resurface." }, { "name": "Dr. Julia Ward", "role": "Supporting Character", "description": "An astute psychologist who helps Ethan manage the stress of his demanding role and assists in profiling Lena's psychological state.", "arc": "Julia grows from a secondary advisory role to a key player in helping Ethan unearth Lena's motivations." }, { "name": "Michael Garner", "role": "Supporting Character", "description": "Ethan's trusted field partner and an expert in electronic surveillance, providing vital technical support.", "arc": "Michael's experience is tested as he learns to adapt to unpredictable situations, becoming more versatile in his approach." } ], "plotPoints": { "exposition": "Ethan Cross is tasked with investigating a series of leaked documents that could compromise national security. The leaks point to an insider within the agency.", "risingAction": "As Ethan dives deeper, he uncovers a trail leading to Lena Grey, a former colleague presumed dead. Evidence mounts as Ethan closes in, forcing him to question his long-standing methodologies.", "climax": "Ethan finally confronts Lena, who has rigged a trap to destroy critical evidence. In a tense standoff, Ethan must choose between following protocol or taking a risk to stop her.", "fallingAction": "With quick thinking and a new reliance on intuition, Ethan manages to disarm the trap. Lena, deflated, questions her own motives as old memories of camaraderie surface.", "resolution": "Lena is apprehended, the mole hunt ends, and Ethan reflects on his journey, acknowledging the balance between calculated strategy and spontaneity." }, "centralConflict": "Ethan Cross must identify and capture a mole within the agency who is leaking classified information, while dealing with his own rigid attachment to protocol in a dynamically evolving threat landscape.", "setting": "The story unfolds across various global locations including the bustling intelligence hub of Langley, a remote cabin in the Swiss Alps, and the teeming streets of Berlin, lending an authentic and international scope to the narrative.", "majorTurningPoints": [ "Ethan discovers the identity of the mole as his former colleague Lena Grey.", "Lena executes a series of diversions leading to a crisis within the agency.", "Ethan's adherence to protocol nearly costs him a critical breakthrough.", "Ethan's confrontation with Lena culminates in an uncharacteristic display of intuition that saves the mission." ], "characterArcs": { "protagonistArc": "Ethan evolves from strictly adhering to procedures to embracing a balance between strategy and instinctive decision-making, essential in high-stakes situations.", "antagonistArc": "Lena's journey from spite-fueled revenge to questioning her own motivations reflects a shift from isolation to an internal struggle with her past loyalties.", "supportingCharactersArcs": [ "Julia grows from providing psychological insights to playing an active role in strategizing the final approach to Lena.", "Michael transitions from a technical support role to becoming a crucial element in executing Ethan\u2019s plans, emphasizing adaptability." ] } } d
このスキーマを再利用して、出力に含まれるフィールドについて強力な保証を備えたパイプラインで複数のソリューションを生成できるようになりました。
構造化メタプロンプトを使用すると、構造をオンザフライで定義できるため、下流のプロセスに対する LLM 出力の信頼性が向上します。次の投稿では、構造化メタプロンプトと他の手法の組み合わせについて説明します。