Este es el último artículo de la serie "Clean Code in Go". Partes anteriores : Código limpio: Funciones y manejo de errores en Go: del caos a la claridad [Parte 1] Código limpio en marcha (Parte 2): Estructuras, métodos y composición sobre la herencia Código limpio: Interfaces en Go - Por qué el pequeño es hermoso [Parte 3] Código limpio en marcha (Parte 4): Arquitectura de paquetes, flujo de dependencia y escalabilidad Introducción: Por qué Go Competition es especial He deshabilitado las fugas de goroutina a las 3 de la mañana, fijado las condiciones de la carrera que sólo aparecieron bajo carga, y vi una sola falta "No se comunique compartiendo la memoria; se comunique la memoria comunicando" - este mantra Go se convirtió en la programación simultánea en su cabeza. En lugar de mutexes y semáforos - canales. En lugar de hilos - goroutines. En lugar de llamadas - seleccionar. Y todo esto con el contexto para la gestión del ciclo de vida. defer Errores comunes de la competencia que he encontrado: Goroutine leaks: ~40% de los problemas de memoria de producción Condiciones de raza con estado compartido: ~35% de código concurrente Cancelación del contexto perdido: ~50% de los errores de timeout Deadlocks del mal uso del canal: ~25% de los servicios de colocación Uso incorrecto del mutex (receptor de valor): ~30% de los errores de sincronización Después de 6 años trabajando con Go y sistemas que procesan millones de solicitudes, puedo decir: el uso correcto de goroutines y contexto es la diferencia entre una solución elegante y un incidente de producción a las 3 de la mañana. Contexto: Gestión del ciclo de vida La primera regla del contexto // RULE: context.Context is ALWAYS the first parameter func GetUser(ctx context.Context, userID string) (*User, error) { // correct } func GetUser(userID string, ctx context.Context) (*User, error) { // wrong - violates convention } Cancelación // BAD: operation cannot be cancelled func SlowOperation() (Result, error) { time.Sleep(10 * time.Second) // always waits 10 seconds return Result{}, nil } // GOOD: operation respects context func SlowOperation(ctx context.Context) (Result, error) { select { case <-time.After(10 * time.Second): return Result{}, nil case <-ctx.Done(): return Result{}, ctx.Err() } } // Usage with timeout ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) defer cancel() result, err := SlowOperation(ctx) if err == context.DeadlineExceeded { log.Println("Operation timed out") } Valores contextuales: ¡Use con cuidado! // BAD: using context for business logic type key string const userKey key = "user" func WithUser(ctx context.Context, user *User) context.Context { return context.WithValue(ctx, userKey, user) } func GetUser(ctx context.Context) *User { return ctx.Value(userKey).(*User) // panic if no user! } // GOOD: context only for request metadata type contextKey string const ( requestIDKey contextKey = "requestID" traceIDKey contextKey = "traceID" ) func WithRequestID(ctx context.Context, requestID string) context.Context { return context.WithValue(ctx, requestIDKey, requestID) } func GetRequestID(ctx context.Context) string { if id, ok := ctx.Value(requestIDKey).(string); ok { return id } return "" } // BETTER: explicit parameter passing func ProcessOrder(ctx context.Context, user *User, order *Order) error { // user passed explicitly, not through context return nil } Goroutines: Competencia ligera Categoría: Worker Pool // Worker pool to limit concurrency type WorkerPool struct { workers int jobs chan Job results chan Result wg sync.WaitGroup } type Job struct { ID int Data []byte } type Result struct { JobID int Output []byte Error error } func NewWorkerPool(workers int) *WorkerPool { return &WorkerPool{ workers: workers, jobs: make(chan Job, workers*2), results: make(chan Result, workers*2), } } func (p *WorkerPool) Start(ctx context.Context) { for i := 0; i < p.workers; i++ { p.wg.Add(1) go p.worker(ctx, i) } } func (p *WorkerPool) worker(ctx context.Context, id int) { defer p.wg.Done() for { select { case job, ok := <-p.jobs: if !ok { return } result := p.processJob(job) select { case p.results <- result: case <-ctx.Done(): return } case <-ctx.Done(): return } } } func (p *WorkerPool) processJob(job Job) Result { // Process job output := bytes.ToUpper(job.Data) return Result{ JobID: job.ID, Output: output, } } func (p *WorkerPool) Submit(job Job) { p.jobs <- job } func (p *WorkerPool) Shutdown() { close(p.jobs) p.wg.Wait() close(p.results) } // Usage func main() { ctx, cancel := context.WithCancel(context.Background()) defer cancel() pool := NewWorkerPool(10) pool.Start(ctx) // Submit jobs for i := 0; i < 100; i++ { pool.Submit(Job{ ID: i, Data: []byte(fmt.Sprintf("job-%d", i)), }) } // Collect results go func() { for result := range pool.results { log.Printf("Result %d: %s", result.JobID, result.Output) } }() // Graceful shutdown pool.Shutdown() } Modelo: Fan-out y Fan-in // Fan-out: distribute work among goroutines func fanOut(ctx context.Context, in <-chan int, workers int) []<-chan int { outputs := make([]<-chan int, workers) for i := 0; i < workers; i++ { output := make(chan int) outputs[i] = output go func() { defer close(output) for { select { case n, ok := <-in: if !ok { return } // Heavy work result := n * n select { case output <- result: case <-ctx.Done(): return } case <-ctx.Done(): return } } }() } return outputs } // Fan-in: collect results from goroutines func fanIn(ctx context.Context, inputs ...<-chan int) <-chan int { output := make(chan int) var wg sync.WaitGroup for _, input := range inputs { wg.Add(1) go func(ch <-chan int) { defer wg.Done() for { select { case n, ok := <-ch: if !ok { return } select { case output <- n: case <-ctx.Done(): return } case <-ctx.Done(): return } } }(input) } go func() { wg.Wait() close(output) }() return output } // Usage func pipeline(ctx context.Context) { // Number generator numbers := make(chan int) go func() { defer close(numbers) for i := 1; i <= 100; i++ { select { case numbers <- i: case <-ctx.Done(): return } } }() // Fan-out to 5 workers workers := fanOut(ctx, numbers, 5) // Fan-in results results := fanIn(ctx, workers...) // Process results for result := range results { fmt.Printf("Result: %d\n", result) } } Canales: Ciudadanos de primera clase Canales direccionales // BAD: bidirectional channel everywhere func producer(ch chan int) { ch <- 42 } func consumer(ch chan int) { value := <-ch } // GOOD: restrict direction func producer(ch chan<- int) { // send-only ch <- 42 } func consumer(ch <-chan int) { // receive-only value := <-ch } // Compiler will check correct usage func main() { ch := make(chan int) go producer(ch) go consumer(ch) } Operaciones de selección y no bloqueo // Pattern: timeout with select func RequestWithTimeout(url string, timeout time.Duration) ([]byte, error) { result := make(chan []byte, 1) errCh := make(chan error, 1) go func() { resp, err := http.Get(url) if err != nil { errCh <- err return } defer resp.Body.Close() data, err := io.ReadAll(resp.Body) if err != nil { errCh <- err return } result <- data }() select { case data := <-result: return data, nil case err := <-errCh: return nil, err case <-time.After(timeout): return nil, fmt.Errorf("request timeout after %v", timeout) } } // Non-blocking send func TrySend(ch chan<- int, value int) bool { select { case ch <- value: return true default: return false // channel full } } // Non-blocking receive func TryReceive(ch <-chan int) (int, bool) { select { case value := <-ch: return value, true default: return 0, false // channel empty } } Condiciones de la raza y cómo evitarlas Título: Data Race // DANGEROUS: data race type Counter struct { value int } func (c *Counter) Inc() { c.value++ // NOT atomic! } func (c *Counter) Value() int { return c.value // race on read } // Check: go test -race Solución 1: Mutex type SafeCounter struct { mu sync.RWMutex value int } func (c *SafeCounter) Inc() { c.mu.Lock() defer c.mu.Unlock() c.value++ } func (c *SafeCounter) Value() int { c.mu.RLock() defer c.mu.RUnlock() return c.value } // Pattern: protecting invariants type BankAccount struct { mu sync.Mutex balance decimal.Decimal } func (a *BankAccount) Transfer(to *BankAccount, amount decimal.Decimal) error { // Important: always lock in same order (by ID) // to avoid deadlock if a.ID() < to.ID() { a.mu.Lock() defer a.mu.Unlock() to.mu.Lock() defer to.mu.Unlock() } else { to.mu.Lock() defer to.mu.Unlock() a.mu.Lock() defer a.mu.Unlock() } if a.balance.LessThan(amount) { return ErrInsufficientFunds } a.balance = a.balance.Sub(amount) to.balance = to.balance.Add(amount) return nil } Solución 2: Canales para la sincronización // Use channels instead of mutexes type ChannelCounter struct { ch chan countOp } type countOp struct { delta int resp chan int } func NewChannelCounter() *ChannelCounter { c := &ChannelCounter{ ch: make(chan countOp), } go c.run() return c } func (c *ChannelCounter) run() { value := 0 for op := range c.ch { value += op.delta if op.resp != nil { op.resp <- value } } } func (c *ChannelCounter) Inc() { c.ch <- countOp{delta: 1} } func (c *ChannelCounter) Value() int { resp := make(chan int) c.ch <- countOp{resp: resp} return <-resp } Los patrones de competencia Título: Graceful Shutdown type Server struct { server *http.Server shutdown chan struct{} done chan struct{} } func NewServer(addr string) *Server { return &Server{ server: &http.Server{ Addr: addr, }, shutdown: make(chan struct{}), done: make(chan struct{}), } } func (s *Server) Start() { go func() { defer close(s.done) if err := s.server.ListenAndServe(); err != nil && err != http.ErrServerClosed { log.Printf("Server error: %v", err) } }() // Wait for shutdown signal go func() { sigCh := make(chan os.Signal, 1) signal.Notify(sigCh, os.Interrupt, syscall.SIGTERM) select { case <-sigCh: case <-s.shutdown: } ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second) defer cancel() if err := s.server.Shutdown(ctx); err != nil { log.Printf("Shutdown error: %v", err) } }() } func (s *Server) Stop() { close(s.shutdown) <-s.done } Título: Limitación de tarifas type RateLimiter struct { rate int bucket chan struct{} stop chan struct{} } func NewRateLimiter(rate int) *RateLimiter { rl := &RateLimiter{ rate: rate, bucket: make(chan struct{}, rate), stop: make(chan struct{}), } // Fill bucket for i := 0; i < rate; i++ { rl.bucket <- struct{}{} } // Refill bucket at given rate go func() { ticker := time.NewTicker(time.Second / time.Duration(rate)) defer ticker.Stop() for { select { case <-ticker.C: select { case rl.bucket <- struct{}{}: default: // bucket full } case <-rl.stop: return } } }() return rl } func (rl *RateLimiter) Allow() bool { select { case <-rl.bucket: return true default: return false } } func (rl *RateLimiter) Wait(ctx context.Context) error { select { case <-rl.bucket: return nil case <-ctx.Done(): return ctx.Err() } } Pattern: Pipeline con manejo de errores // Pipeline stage with error handling type Stage func(context.Context, <-chan int) (<-chan int, <-chan error) // Compose stages func Pipeline(ctx context.Context, stages ...Stage) (<-chan int, <-chan error) { var ( dataOut = make(chan int) errOut = make(chan error) dataIn <-chan int errIn <-chan error ) // Start generator start := make(chan int) go func() { defer close(start) for i := 1; i <= 100; i++ { select { case start <- i: case <-ctx.Done(): return } } }() dataIn = start // Apply stages for _, stage := range stages { dataIn, errIn = stage(ctx, dataIn) // Collect errors go func(errors <-chan error) { for err := range errors { select { case errOut <- err: case <-ctx.Done(): return } } }(errIn) } // Final output go func() { defer close(dataOut) for val := range dataIn { select { case dataOut <- val: case <-ctx.Done(): return } } }() return dataOut, errOut } Tipos prácticos Siempre use el contexto para operaciones largas No engendren goroutines sin control - utilicen piscinas de trabajadores Prefiere canales a mutexes para la coordinación Utilice sync/atomic para contadores simples Pruebas con la bandera -race Reduce la dirección del canal Siempre piensa en el gracioso cierre Competición Checklist El contexto pasó como primer parámetro Las goroutinas se pueden detener a través del contexto No hay goroutinas huérfanas (leaks) Canales cerrados por emisor Mutexes cerrados en el mismo orden Pase de pruebas con la bandera -race Tiene un gracioso cierre Base de trabajadores para operaciones en masa Conclusión La competencia en Go no es sólo una característica, es la filosofía del lenguaje.El uso correcto de goroutines, canales y contexto permite escribir elegante código simultáneo sin problemas tradicionales de multithreading. Este artículo concluye la serie "Clean Code in Go".Hemos cubierto el viaje de las funciones a la concurrencia, tocando todos los aspectos clave de la escritura del código idiomático Go. Recuerde: Go se trata de simplicidad, y el código limpio en Go es el código que sigue los idiomas del idioma. ¿Cuál es tu peor incidente de producción causado por las condiciones de la carrera? ¿Cómo pruebas el código simultáneo? ¿Qué patrones te han salvado de las fugas de goroutina? ¡Comparte tus historias de guerra en los comentarios!