paint-brush
How to Create a Simple Pop-up Chatbot Using OpenAI by@alexxanderx
1,322 reads
1,322 reads

How to Create a Simple Pop-up Chatbot Using OpenAI

by Alexandru Prisacariu
Alexandru Prisacariu HackerNoon profile picture

Alexandru Prisacariu

@alexxanderx

Enjoying learning new things

June 30th, 2024
Read on Terminal Reader
Read this story in a terminal
Print this story
Read this story w/o Javascript
Read this story w/o Javascript

Too Long; Didn't Read

In this tutorial, I will present how to create a simple and a more complex popup AI chat that can be added to any website. The client will be able to reply to the chat by typing and speaking to the bot. The application will be implemented in JavaScript and for the complex version we will be using WebSockets.
featured image - How to Create a Simple Pop-up Chatbot Using OpenAI
1x
Read by Dr. One voice-avatar

Listen to this story

Alexandru Prisacariu HackerNoon profile picture
Alexandru Prisacariu

Alexandru Prisacariu

@alexxanderx

Enjoying learning new things

Learn More
LEARN MORE ABOUT @ALEXXANDERX'S
EXPERTISE AND PLACE ON THE INTERNET.
0-item

STORY’S CREDIBILITY

Guide

Guide

Walkthroughs, tutorials, guides, and tips. This story will teach you how to do something new or how to do something better.

In this tutorial, I will present how to create a simple popup AI chat that can be added to any website. The client will be able to reply to the chat by typing and speaking to the bot.


Demonstration of the chatbot created in this post

Demonstration of the chatbot created in this post

We will be using tools from OpenAI for the AI functionalities. For the chat, we will use ChatGPT, for the STT (speech-to-text), Whisper, and for the TTS (text-to-speech), their TTS.


I will show multiple methods to implement the app, starting from a naive, or basic, method to a better but also more complex method.

The application will be implemented in JavaScript (ECMAScript). However, read the final chapter if you are interested in implementations in other languages.


All the code is available in my GitHub repository.

The Basics

In this chapter, we will go to the basics of the application: the project structure and packages we used.


The project will be using the following packages:

Package name

Description

express

For the HTTP server and routing

openai

For all the OpenAI stuff

sass

To convert the SASS style files to CSS files

ws

For the WebSockets


The project structure is as follows:

Path

Description

public

The exposed directory to the internet under the static name

public/audio

The directory containing public audio files

public/img

The directory containing public images

public/index.html

The entrypoint

style

The directory containing the style of the page

version-1

The naive implementation source code directory

version-2

The better implementation source code directory


The project can be seen here, and where a code will be listed will also contain the relative path to where that code can be found.


Run npm install followed by a npm run build to convert the SASS file to CSS, and you are ready to go.


To start the naive implementation, run npm run start-v1, or to run the better implementation, run npm run start-v2. Don't forget to define the environment variable OPENAI_API_KEY.


On UNIX systems you can run:

OPENAI_API_KEY=YOU_API_KEY npm run start-v1`

And on Windows:

set OPENAI_API_KEY=YOU_API_KEY
npm run start-v1


This is the page you should see when you access the page:

The page you see when enter the website

The page you see when enter the website


The Naive/Simple Implementation

The naive implementation uses HTTP requests and responses for sending and receiving data from the server.


We will look over each important function. All the code can be found in the above-mentioned link.


Here is an activity diagram of how the app will work:

UML diagram of how the chatbot works

UML diagram of how the chatbot works


Let's look at what happens when the user presses enter on the text input element:


/* version-1/client.js */
inputTextElement.addEventListener('keydown', async (event) => {
    if (event.code !== 'Enter') return;
    if (!inputTextElement.value) return;
    
    const message = inputTextElement.value;

    inputTextElement.value = "";
    inputTextElement.disabled = true;
    inputSpeechElement.disabled = true;

    await addMessage('user', message);

    inputTextElement.disabled = false;
    inputSpeechElement.disabled = false;
});


Once the user hits the enter key and the input is not empty, we will disable both the text input and the audio button so the user won't send another message while we getting a response to the previous message. Once we get the answer, we restore the functionality.


After we disable the input, we call the main function, addMessage, which does the magic. Let's look at it:


/* version-1/client.js */
/**
 * Add a new message to the chat.
 * @async
 * 
 * @param {MessageType} type the type of message
 * @param {String|Audio} message the data of the message
 * @param {Object} [settings] additional settings
 * @param {Number} [settings.audioLength] the length of the audio in seconds
 * @returns {Promise} the promise resolved when all is done
 */
async function addMessage(type, message, settings = {}) {
    const newMsg = document.createElement('div');
    newMsg.classList.add('message');

    if (type === MessageType.User) {
        newMsg.classList.add('user');
        newMsg.innerHTML = message;
    } else if (type === MessageType.UserAudio) {
        newMsg.classList.add('user', 'audio');
        newMsg.innerHTML = 'Audio message';
    } else {
        newMsg.classList.add(MessageType.Bot);
    }

    const msgsCnt = document.getElementById('friendly-bot-container-msgs');
    msgsCnt.appendChild(newMsg);

    // Keeping own history log
    if (type === MessageType.User || type === MessageType.Bot) {
        messageHistory.push({ role: type === MessageType.User ? 'user' : 'assistant', content: message });
    }
        
    if (type === MessageType.Bot) {
        if (Settings.UseWriteEffect) {
            // Create a write effect when the bot responds
            let speed = Settings.DefaultTypingSpeed;

            if (settings.audioLength) {
                const ms = settings.audioLength * 1000 + ((message.match(/,/g) || []).length * 40) + ((message.match(/\./g) || []).length * 70);
                speed = ms / message.length;
            }
            
            for (let i=0, length=message.length; i < length; i += 1) {
                newMsg.innerHTML += message.charAt(i);
                await sleep(speed);
            }
        } else {
            newMsg.innerHTML = message;
        }
    } else if (type === MessageType.User || type === MessageType.UserAudio) {
        let response;
        if (type === MessageType.User) {
            response = await sendMessage({ message });
        } else if (type === MessageType.UserAudio) {
            response = await sendMessage({ audio: message });        
        }

        if (response.audio) {
            const audio = convertBase64ToAudio(response.audio);
            playAudio(audio);
        }
        
        return addMessage(MessageType.Bot, response.answer);
    }
}


The function will create a new HTMLDivElement for the new message and add the CSS class based on the type of the message.


Once that is done, we store the message in our client-side chat history.


Next, if the message to be added is from the bot, we display it using a "writing effect." We try to synchronize the audio, if it exists, to the typing speed by dividing the length of the audio by the number of characters in the message.


If the message added is from the user then, we send it to the server to get the answer from AI by calling the function sendMessage.


The function sendMessage just makes an HTTP request using fetch to our server.


One thing to mention: we generate a random ID for each client that we send with each message so the server knows from where to get the chat history.


The alternative to sending an identifying ID to the server would be to send the whole history each time, but with each message, the data that needs to be sent increases.


/* version-1/client.js */
/**
 * Create a random ID of given length.
 * Taken from https://stackoverflow.com/a/1349426
 * 
 * @param {Number} length the length of the generated ID
 * @returns {String} the generated ID
 */
function makeID(length) {
    let result = '';
    const characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
    const charactersLength = characters.length;
    let counter = 0;
    while (counter < length) {
        result += characters.charAt(Math.floor(Math.random() * charactersLength));
        counter += 1;
    }
    return result;
}

const ChatID = makeID(10);

// ...

/**
 * Send a message to the server and return the JSON back.
 * @async
 * 
 * @param {Object} data the data to send
 * @returns {Promise<Object>} the result from the server
 */
async function sendMessage(data = {}) {
    try {
        const response = await fetch(Settings.APISendMessage, {
            method: "POST",
            headers: {
                "Content-Type": "application/json",
            },
            body: JSON.stringify({ id: ChatID, ...data }),
        });

        return response.json();        
    } catch (error) {
        console.error("Error:", error);
    }
}


Before we go to the server side to see how it handles the request, let's see what happens when the user clicks on the audio button:


/* version-1/client.js */
inputSpeechElement.addEventListener('click', async (_event) => {
    inputTextElement.value = "";
    inputTextElement.disabled = true;
    inputSpeechElement.disabled = true;

    const stopRecordButtonElement = document.getElementById('friendly-bot-container-stop-record');

    const base64Audio = await recordUserAudio(stopRecordButtonElement);
    await addMessage(MessageType.UserAudio, base64Audio.substring(`data:${Settings.ClientAudioMimeType};base64,`.length));

    inputTextElement.disabled = false;
    inputSpeechElement.disabled = false;
});


It is very similar to text input handling. The function recordUserAudio will return a base64 encoded audio, and we just cut the header of it before sending it to addMessage.


The recordUserAudio function will try to get permission from the user to record audio and, if granted, will create a MediaRecorder and start recording. We also will show some UI elements to let know the user we are recording their voice and a button to stop the recording when done.


Once the stop button is hit, we convert the audio chunks to a Blob object and the blob to a base64 encoded string and return it.


We also go through each audio track and stop them, then remove them. This is necessary because, at least on Chrome, calling mediaRecorder.stop() will not stop the "listening" state of the microphone.


Encoding the audio to base64 is not a very efficient method of sending the audio to the server but is a very easy method. We will look at another method to send the audio to the server in The better implementation section.


/* version-1/client.js */
/**
 * Record the user and return it as an base64 encoded audio.
 * @async
 * 
 * @param {HTMLElement} stopRecordButtonElement the stop button element
 * @returns {Promise<String>} the base64 encoded audio
 */
async function recordUserAudio(stopRecordButtonElement) {
    let stream;
    try {
        stream = await navigator.mediaDevices.getUserMedia({ audio: true });
    } catch (error) {
        console.error(`The following getUserMedia error occurred: ${error}`);
        return;
    }

    let chunks = [];

    const mediaRecorder = new MediaRecorder(stream, { mimeType: Settings.ClientAudioMimeType });

    return new Promise((resolve, reject) => {
        const onStopClick = () => {
            mediaRecorder.stop();
            stopRecordButtonElement.classList.remove('show');
        };

        mediaRecorder.addEventListener('dataavailable', (event) => {
            chunks.push(event.data);
        });

        mediaRecorder.addEventListener('stop', (_event) => {
            const blob = new Blob(chunks, { type: Settings.ClientAudioMimeType });
            chunks = [];

            const base64AudioPromise = blobToBase64(blob);

            stopRecordButtonElement.removeEventListener('click', onStopClick);

            // Stop the audio listening
            stream.getAudioTracks().forEach((track) => {
                track.stop()
                stream.removeTrack(track);
            });

            base64AudioPromise.then(resolve).catch(reject);
        });

        stopRecordButtonElement.classList.add('show');

        mediaRecorder.start();

        stopRecordButtonElement.addEventListener('click', onStopClick);
    })
}


Let's look now at how the request is handled on the server:


/* version-1/server.js */
app.post('/api/message', async (req, res) => {
    if (!req.body.message && !req.body.audio) {
        res.status(400).send('Missing "message" or "audio"');
    }

    if (req.body.message && req.body.audio) {
        res.status(400).send('Cannot be both "message" and "audio"');
    }

    if (!req.body.id) {
        res.status(400).send('Missing "id"');
    }

    const messages = getChatMessages(chatHistory, req.body.id);
    
    if (req.body.message) {
        messages.push({ role: "user", content: req.body.message });
    } else {
        let content;
        try {
            content = await stt(openai, req.body.audio);
        } catch (error) {
            console.error(`(ChatID: ${req.body.id}) Error when trying to convert the user's audio to text:`);
            console.error(error);
            res.status(500).end();
            return;
        }

        messages.push({ role: "user", content });
    }

    let answer;
    try {
        answer = await getAnswer(openai, messages);
    } catch (error) {
        console.error(`(ChatID: ${req.body.id}) Error when trying to get an answer from ChatGPT:`);
        console.error(error);
        res.status(500).end();
        return;
    }

    let audio;
    if (Settings.CreateAudioOfAnswer) {
        try {
            audio = await tts(openai, answer);
        } catch (error) {
            console.error(`(ChatID: ${req.body.id}) Error when trying to convert the ChatGPT's answer to audio:`);
            console.error(error);
            res.status(500).end();
            return;
        }
    }

    messages.push({ role: "assistant", content: answer });

    res.json({ answer, audio });
});


After we check that the client sent the required data, we get the chat history for the given ID (or create a new chat history):


/* version-1/server.js */
/**
 * Get the chat history, or create a new one or the given ID.
 * 
 * @param {Object} chatHistory the global chat history object containing all the chats
 * @param {String} id the ID of the chat to retrieve
 * @returns {Object} the chat history for the given `id`
 */
function getChatMessages(chatHistory, id) {
    if (!chatHistory[id]) {
        chatHistory[id] = [
            { role: "system", content: Settings.AISystemContent },
            { role: "assistant", content: Settings.WelcomeMessage }
        ];
    }

    return chatHistory[id];
}


Then, if the received message is a text, not an audio, we add the message to the chat history. If the received message is an audio, we call the function stt that will perform the speech-to-text action using OpenAI's Whisper.


The function will use the openai.audio.transcriptions.create method. The main parameter of this method is file, which must represent our audio data. We use the toFile function from the package openai/uploads to convert our base64 encoded audio file to a file that OpenAI can read. The function will return the transcription of the given audio.


/* version-1/server.js */
/**
 * Convert speech to text using OpenAI.
 * @async
 * 
 * @param {OpenAI} openai the OpenAI instance
 * @param {String} audio the base64 encoded audio
 * @returns {Promise<String>} the text
 */
async function stt(openai, audio) {
    // Documentation https://platform.openai.com/docs/api-reference/audio/createTranscription
    const transcription = await openai.audio.transcriptions.create({
        file: await toFile(Buffer.from(audio, 'base64'), `audio.${Settings.ClientAudioExtension}`),
        model: Settings.STTModel,
        language: Settings.ClientAudioLanguage, // this is optional but helps the model
    });

    return transcription.text;
}


Now that we have the message, we send the chat to ChatGPT and wait for a response by calling the getAnswer function.


/* version-1/server.js */
/**
 * 
 * @param {*} openai 
 * @param {*} messages 
 * @returns 
 */
async function getAnswer(openai, messages) {
    // Documentation https://platform.openai.com/docs/api-reference/chat/create
    const completion = await openai.chat.completions.create({
        messages,
        model: Settings.ChatGPTModel,
    });

    return completion.choices[0].message.content;
}


The last part is about converting the response from the AI to audio using the function tts that uses the method openai.audio.speech.create to create an audio file. The OpenAI's TTS supports multiple formats, but we've chosen mp3 for this tutorial.


Once the audio data is obtained, we convert it into a Buffer, and from there, to a base64 encoded audio string to send back to the client.


/* version-1/server.js */
/**
 * Convert text to speech.
 * @async
 * 
 * @param {*} openai 
 * @param {*} input 
 * @returns 
 */
async function tts(openai, input) {
    // Documentation https://platform.openai.com/docs/api-reference/audio/createSpeech
    const mp3 = await openai.audio.speech.create({
        model: Settings.TTSModel,
        voice: Settings.TTSVoice,
        input,
        response_format: Settings.TTSFormat
    });

    return Buffer.from(await mp3.arrayBuffer()).toString('base64');
}


The Better Implementation

But can we make it better? Well, yes. Instead of using HTTP requests, we can instead use WebSockets to communicate between the client and the server and tell ChatGPT to return the results as a stream. In this way, we can create a real-time writing effect because we will stream the result from ChatGPT to the client in real-time.


This implementation has a drawback, but only because we are using OpenAI's TTS, which accepts a maximum of 3 requests per minute. Therefore, for this implementation, we will drop the text-to-speech feature, but I will give tips on how to reimplement it and what to look for when doing so.


So let's look at some code. We started from the previous implementation and changed what was needed to support WebSockets.


/* version-2/client.js */
const ws = new WebSocket(Settings.WSAddress);
const ChatID = makeID(10);

// When the connection to the server is made send the chat ID
ws.addEventListener('open', () => {
    const idMessage = new Uint8Array([ClientMessageID.SetClientID, ...new TextEncoder().encode(ChatID)]);
    ws.send(idMessage);
});


In this section of the client code, we connect to the WebSocket server. When the connection is opened, we send the chat ID as the first message so the server knows who we are.


The structure of the data/messages sent between the client and the server follows this format:


The structure of the messages

The structure of the messages


The first byte represents the type of message we are sending, allowing the server to know how to handle the payload represented by the following bytes in the data sent.


Note that we configured the WebSocket server to accept and send only binary data. This is why we will always send a Uint8Array from the client side and a Buffer from the server side. We are sending iy only in binary because it is more efficient, converting to text only what we need and remaining to stay in binary (like the audio chunks, what needs to remain in binary).


In the following code, we handle the messages received from the server side:


/* version-2/client.js */
const subscriptionsToWSMessages = [];

ws.addEventListener('message', async (event) => {
    const data = new Uint8Array(await event.data.arrayBuffer());
    const messageType = data[0];

    // Because we know all the possible messages are all strings we can convert all the payloads to string
    const content = new TextDecoder().decode(data.slice(1));

    if (!ws.allGood && messageType !== ServerMessageID.OK) {
        if (messageType === ServerMessageID.Error) {
            console.error('Something wrong sending the chat ID:', content);
        }
    } else if (messageType === ServerMessageID.OK) {
        ws.allGood = true;
    } else {
        let done;
        for (let i=0, length=subscriptionsToWSMessages.length; i < length; i += 1) {
            done = await subscriptionsToWSMessages[i](messageType, content);
            if (done === true) return;
        }

        if (!done) {
            if (messageType === ServerMessageID.Error) {
                console.error('Unhandled error received from server:', content);
            } else {
                console.log(`Unknown message type "${messageType}" received.`);
            }
        }
    }
});


Since we know that all the messages we receive from the server side are texts, we can safely convert the entire payload to a String using TextDecodernew TextDecoder().decode(data.slice(1));.


First, we will wait for the first ServerMessageID.OK from the server, which represents that the sent chat ID is valid.


To be flexible, we use an array of functions that represent listeners to the messages received from the server. This allows us to be modular in our approach. Each function must return true or falsetrue means that the message was processed, and it is not necessary to call the rest of the subscribed functions.


To make it easy to add and remove subscribers, we extend our ws object with the following:


/* version-2/client.js */
/**
 * Add a function to the list of functions to be called when the socket receives
 * a new message. The function must return a boolean: if `true` is returned then
 * is considered that the message was handled and will stop the exection of the
 * rest of the subscribers in the list.
 * 
 * @param {Function} fn the function to be added
 */
ws.subscribeToWSMessage = (fn) => {
    subscriptionsToWSMessages.push(fn);
}

/**
 * Remove an added function from the list of subscribers.
 * 
 * @param {Function} fn the function to be removed
 */
ws.unsubscribeToWSMessage = (fn) => {
    subscriptionsToWSMessages.splice(subscriptionsToWSMessages.indexOf(fn), 1);
}


Next, we extend again the ws object with 3 more methods:

  • sendTextMessage for sending the user's text message;


  • sendAudioChunk for sending an audio chunk from the user's voice recording;


  • sendAudioEnd for telling the server that the audio is done.


/* version-2/client.js */
/**
 * Send a text message to the server.
 * @async
 * 
 * @param {String} message the message to send
 * @param {Function} onNewMessageContent the function to be called with the new answer from bot as it sent from the server
 */
ws.sendTextMessage = async (message, onNewMessageContent) => {
    ws.createSubscriptionForBotResponse(onNewMessageContent);

    const wsMessage = new Uint8Array([ClientMessageID.UserTextMessage, ...new TextEncoder().encode(message)]);
    ws.send(wsMessage);
};


The sendTextMessage method accepts the message that needs to be sent to the server and a function that will be called multiple times with the stream of data received from ChatGPT.


In this method, before sending the message to the server, we call the createSubscriptionForBotResponse method, which handles creating and adding a subscription to listen for new messages to handle the response from the bot.


/* version-2/client.js */
/**
 * Create and add a subscription to listen for the response of the bot to our sent message
 * 
 * @param {Function} onNewMessageContent the function to be called with the new answer from bot as it sent from the server
 */
ws.createSubscriptionForBotResponse = (onNewMessageContent) => {
    const wsMessagesHandler = (messageType, content) => {
        if (messageType === ServerMessageID.TextChunk) {
            onNewMessageContent(content);
            return true;
        } else if (messageType === ServerMessageID.TextEnd) {
            ws.unsubscribeToWSMessage(wsMessagesHandler);
            return true;
        }

        return false;
    }

    ws.subscribeToWSMessage(wsMessagesHandler);
}


The subscribed function will check if the received message from the server has the required message type for the bot's response (ServerMessageID.TextChunk). If it does, we call the received function with the text chunk, which will add the chunk to the current bot response in the chat.


When the bot is done with the response, the server will send us a message with type ServerMessageID.TextEnd, indicating that we can stop listening, at which point, we will unsubscribe from listening to new messages.


/* version-2/client.js */
/**
 * Send an audio chunk to the server.
 * @async
 * 
 * @param {Blob} blobChunk the audio blob chunk
 */
ws.sendAudioChunk = async (blobChunk) => {
    const wsMessage = new Uint8Array([ClientMessageID.UserAudioChunk, ...new Uint8Array(await blobChunk.arrayBuffer())]);
    ws.send(wsMessage);
};

/**
 * Tell the server that the audio is done.
 * 
 * @param {Function} onNewMessageContent the function to be called with the new answer from bot as it sent from the server
 */
ws.sendAudioEnd = (onNewMessageContent) => {
    ws.createSubscriptionForBotResponse(onNewMessageContent);

    ws.send(new Uint8Array([ClientMessageID.UserAudioEnd]));
};


The next 2 methods, sendAudioChunk and sendAudioEnd, are for sending the recorded voice of the user to the server. The first one, sendAudioChunk, will send the received bytes to the server, while the other one, sendAudioEnd, will send a message to the server indicating that the audio is done and, like the sendTextMessage method, will call createSubscriptionForBotResponse to listen for the response from the bot.


Next, we will look at how the onNewMessageContent parameter from the sendTextMessage and sendAudioEnd methods is sent.


We slightly modified the addMessage function by splitting it into addUserMessage and addBotMessage. We will just look at addUserMessage:


/* version-2/client.js */
/**
 * Add a new message to the chat.
 * @async
 * 
 * @param {WebSocket} ws the WebSocket
 * @param {MessageType} type the type of message
 * @param {String|Audio} message the data of the message
 * @returns {Promise} the promise resolved when all is done
 */
async function addUserMessage(ws, type, message) {
    createMessageHTMLElement(type, type === MessageType.User ? message : 'Audio message');

    // Keeping own history log
    if (type === MessageType.User) {
        messageHistory.push({ role: type === MessageType.User ? 'user' : 'assistant', content: message });
    }
        
    if (type === MessageType.User) {
        await ws.sendTextMessage(message, addBotMessageInChunks());
    } else {
        await ws.sendAudioEnd(addBotMessageInChunks());
    }
}

/**
 * Add bot message in chunks. The functions returns another function that when called with
 * the argument will add that argument to the bot message.
 * 
 * @returns {Function} the function accept a parameter `content`; when called the `content` is added to the message
 */
function addBotMessageInChunks() {
    const newMsg = createMessageHTMLElement(MessageType.Bot);

    let nextContentIndex = 0;
    let currentContentIndex = 0;
    let currentContentPromise;

    const onNewMessageContent = async (content) => {
        const thisContentIndex = nextContentIndex;
        nextContentIndex += 1;

        while (thisContentIndex !== currentContentIndex) {
            await currentContentPromise;
        }

        currentContentPromise = new Promise(async resolve => {
            await addContentToMessage(newMsg, content);

            currentContentIndex += 1;
            resolve();
        });
    }

    return onNewMessageContent;
}


The addBotMessageInChunks function is responsible for creating and returning the function that will append the given text/content to the current bot message.


Because we want to have a writing effect on the bot message as it comes in, we need to have a method to synchronize everything. The server will send the text as it comes, and the addContentToMessage function, which is responsible for creating the writing effect, may not be ready in time to handle the next received text.


So, we came up with a simple synchronization mechanism: we create 2 counters and a variable that will hold a promise. Each time the returned function is called, we assign to that call the next index (line 39), and then increase the counter. The function will wait for its turn by waiting for the promise to be resolved, and when it is its turn, it will overwrite the promise variable with a new promise that will just wait for the writing effect to be done (line 47) and then increase the counter.


/* version-2/client.js */
/**
 * Record the user and send the chunks to the server and on end wait for all the chunks to be sent.
 * @async
 * 
 * @param {WebSocket} ws the WebSocket
 * @param {HTMLElement} stopRecordButtonElement the stop button element
 * @returns {Promise}
 */
async function recordUserAudio(ws, stopRecordButtonElement) {
    let stream;
    try {
        stream = await navigator.mediaDevices.getUserMedia({ audio: true });
    } catch (error) {
        console.error(`The following getUserMedia error occurred: ${error}`);
        return;
    }

    const mediaRecorder = new MediaRecorder(stream, { mimeType: Settings.ClientAudioMimeType });

    return new Promise((resolve, _reject) => {
        const onStopClick = () => {
            mediaRecorder.stop();
            stopRecordButtonElement.classList.remove('show');
        };

        // Create an array to store the promises of the sent audio chunks so we can make sure that
        // when the user hit the stop button all the audio chunks are sent
        const sentAudioChunksPromises = [];

        mediaRecorder.addEventListener('dataavailable', (event) => {
            sentAudioChunksPromises.push(ws.sendAudioChunk(event.data));
        });

        mediaRecorder.addEventListener('stop', async (_event) => {
            await Promise.all(sentAudioChunksPromises);

            // Stop the audio listening
            stream.getAudioTracks().forEach((track) => {
                track.stop()
                stream.removeTrack(track);
            });

            resolve();
        });

        stopRecordButtonElement.classList.add('show');

        // The parameter of `start` is called `timeslice` and define how often, in milliseconds,
        // to fire the `dataavailable` event with the audio chunk
        mediaRecorder.start(1000);

        stopRecordButtonElement.addEventListener('click', onStopClick);
    })
}


The function recordUserAudio was also changed slightly:

  • Calling mediaRecorder.start() with the argument 1000 will slice the user's audio into chunks of 1 second, which will be received in the handler for the dataavailable event;


  • The handler for the dataavailable event will add the promise returned by the calling of ws.sendAudioChunk into an array so we can wait for all of them to finish in the handler for the stop event of our MediaRecorder instance.


This is pretty much it for the client-side.


Now, let's switch to the server side to see what was added:


/* version-2/server.js */
const webSocketServer = new WebSocketServer({ port: Settings.WSPort });

webSocketServer.on('connection', function connection(clientWS) {
    // Array to keep all the audio chunks until the user is done talking
    clientWS.audioChunks = [];

    clientWS.on('error', console.error);
    
    clientWS.on('message', async (data, isBinary) => {
        // ...
    });
});


We are creating the WebSocket server (using the ws package) with our defined port. Once we have a connection, we add an empty array called audioChunksto the client socket, which will hold the audio buffer chunks.


When the user sends a message, we do the following:


/* version-2/server.js */
// ...

// If the message is non-binary then reject it.
// If the user did not already set the chatID then we close the socket.
if (!isBinary) {
    const errorMsg = 'Only binary messages are supported.';
    clientWS.send(Buffer.from([ServerMessageID.Error, errorMsg]));
    console.error(`(ChatID: ${clientWS.chatID}) Non-binary message received.`);

    if (!clientWS.chatID) {
        clientWS.close(1003, errorMsg);
    }

    return;
}

const messageType = data[0];
const payload = data.slice(1);

if (!clientWS.chatID && messageType !== ClientMessageID.SetClientID) {
    clientWS.send(Buffer.from('Error! Please send first your ID'));
} else if (messageType === ClientMessageID.SetClientID) {
    const id = payload.toString('utf8');

    if (typeof id === 'string' && id.trim() !== '') {
        clientWS.chatID = id;
        clientWS.send(Buffer.from([ServerMessageID.OK]));
    } else {
        clientWS.send(Buffer.from([ServerMessageID.Error, ...Buffer.from('Error! Invalid ID. Please send a valid string ID.')]));
    }
}

// ...


First, we check if the received message is in binary. After that, we separate the message type (messageType) from the rest of the data (payload). If the client hasn't sent the chat ID yet and the message type is not for this, then return an error. Otherwise, we store the chat ID if is correct inside the client socket.


/* version-2/server.js */
// ...
} else if (messageType === ClientMessageID.UserTextMessage || messageType === ClientMessageID.UserAudioEnd) {
    const messages = getChatMessages(chatHistory, clientWS.chatID);

    let messageContent;
    if (messageType === ClientMessageID.UserTextMessage) {
        messageContent = payload.toString('utf8');
    } else if (messageType === ClientMessageID.UserAudioEnd) {
        // When the client send the `ClientMessageID.UserAudioEnd` message type it means it clicked the STOP button
        
        // Concat all the buffers into a single one
        const buffer = Buffer.concat(clientWS.audioChunks);

        // Reset the chunks array
        clientWS.audioChunks = [];

        // Send audio to OpenAI to perform the speech-to-text
        messageContent = await stt(openai, buffer);
    }

    messages.push({ role: "user", content: messageContent });

    try {
        await getAnswer(openai, messages, clientWS);
    } catch (error) {
        console.error(`(ChatID: ${clientWS.chatID}) Error when trying to get an answer from ChatGPT:`);
        console.error(error);
        clientWS.send(Buffer.from([ServerMessageID.Error, ...Buffer.from('Error!')]));
        return;
    }
}
// ...


Once the client sends a message of type ClientMessageID.UserTextMessage or ClientMessageID.UserAudioEnd, we retrieve, as before, the chat's messages. If the message is of type ClientMessageID.UserTextMessage, we will convert the received data (payload) to a String.


If the message is of type ClientMessageID.UserAudioEnd, we will combine all the audio buffer chunks into a single chunk, reset the array of chunks, and perform the speech-to-text action on the audio, which will return the text.


The next step is to create the new message in the format accepted by ChatGPT and query ChatGPT for a response.


/* version-2/server.js */
// ...
} else if (messageType === ClientMessageID.UserAudioChunk) {
    clientWS.audioChunks.push(payload);
}
// ...


The last message type we handle is for the audio chunks, which just adds the received data to the audio chunks array of the client socket.


Now, let’s look over how the getAnswer function was changed in order to support streams:


/* version-2/server.js */
/**
 * Get the next message in the conversation
 * @async
 * 
 * @param {OpenAI} openai the OpenAI instance
 * @param {String[]} messages the messages in the OpenAI format
 * @returns {String} the response from ChatGPT
 */
async function getAnswer(openai, messages, clientWS) {
    // Documentation https://platform.openai.com/docs/api-reference/chat/create
    const stream = await openai.chat.completions.create({
        model: Settings.ChatGPTModel,
        messages,
        stream: true,
    });

    for await (const chunk of stream) {
        const content = chunk.choices[0]?.delta?.content;
        if (!content) continue;

        clientWS.send(Buffer.from([ServerMessageID.TextChunk, ...Buffer.from(content || "")]));
    }

    clientWS.send(Buffer.from([ServerMessageID.TextEnd]));
}


By simply adding stream: true to the object sent as an argument to ChatGPT, it will return a stream object that we can loop through. For each non-empty chunk of data, we will send it back to the client. After the stream is done, we need to notify the client that the response is complete.

Tips for Adding the TTS Functionality Back

Ok, ok, but what if we have a TTS service that supports streaming or accepts many requests that are processed fast?


No problem: we just need to adjust some things on the server and client side.


On the server side, once we receive a chunk of the answer from the AI (in the getAnswer function), we need to call our TTS service and send the audio data received as a response to the client side.


On the client side, more changes are needed:

  • We cannot, anymore, transform the received data to text because now we can receive audio data;


  • Because we might receive the next audio data before the previous audio is done playing, we need to introduce a synchronization method to keep track of which audio needs to be played next.

Final Words

There are aspects that were omitted in this post/implementation, such as error handling for different parts of the code.


If you would like to see an implementation of the server in Go or Rust please write to me at alex@alexprisacariu.dev.


Diagrams were generated using Draw.io, and the grammar check was done by ChatGPT.


Resources:


L O A D I N G
. . . comments & more!

About Author

Alexandru Prisacariu HackerNoon profile picture
Alexandru Prisacariu@alexxanderx
Enjoying learning new things

TOPICS

X REMOVE AD