paint-brush
Getting Started With Python Bokeh: 25+ Data Visualization Examples With Source Codeby@pratikpathak
424 reads
424 reads

Getting Started With Python Bokeh: 25+ Data Visualization Examples With Source Code

by Pratik PathakApril 17th, 2024
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

Discover dynamic data visualization with Python Bokeh, featuring interactive graphs and easy examples.
featured image - Getting Started With Python Bokeh: 25+ Data Visualization Examples With Source Code
Pratik Pathak HackerNoon profile picture

Python Bokeh is one of the best Python packages for data visualization. Today, we are going to see some Python Bokeh Examples. I have also provided the Python Bokeh project source code on GitHub. Learn this easy visualization tool and add it to your Python stack.

What is Python Bokeh?

Python Bokeh is a data visualization tool, or we can also say Python Bokeh is used to plot various types of graphs. There are various other graph plotting libraries like matplotlib, but Python Bokeh graphs are dynamic in nature, which means you can interact with the generated graph. See the below examples…

Installation 💻:

Python Bokeh can be easily installed using PIP. You can install the Python Bokeh easily by running the command:

pip install bokeh

Now everything is ready, let’s go through the examples 🏃‍♂️…

1. LinePlot

from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="{LinePlot Python Bokeh Example")
p.line(x, y, line_width=2)
output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

2. Scatter Plot

from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Scatter Plot Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=10, color="navy", alpha=0.5)
output_notebook()
show(p)

3. Bar Chart

from bokeh.plotting import figure, show, output_notebook
categories = ["A", "B", "C", "D", "E"]
values = [10, 15, 8, 12, 6]
p = figure(x_range=categories, title="Bar Chart Python Bokeh Example by PratikPathak.com")
p.vbar(x=categories, top=values, width=0.9)
output_notebook()
show(p)

4. Histogram

from bokeh.plotting import figure, show, output_notebook
import numpy as np
data = np.random.normal(0, 1, 1000)
p = figure(title="Histogram Python Bokeh Example by PratikPathak.com")
p.hist(data, bins=30, color="navy", alpha=0.5)
output_notebook()
show(p)

5. Pie Chart

from bokeh.plotting import figure, show, output_notebook
labels = ["A", "B", "C", "D"]
values = [10, 15, 8, 12]
p = figure(title="Pie Chart Python Bokeh Example by PratikPathak.com")
p.wedge(x=0, y=0, radius=0.4, start_angle=0.6, end_angle=2.6, color=["red", "green", "blue", "yellow"], legend_label=labels)
output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

6. Time Series Plot

from bokeh.plotting import figure, show, output_notebook
from datetime import datetime, timedelta
start = datetime(2023, 1, 1)
end = start + timedelta(days=30)
x = [start + timedelta(days=i) for i in range((end-start).days)]
y = [10, 15, 8, 12, 6, 18, 9, 14, 7, 11, 5, 16, 8, 13, 6]
p = figure(x_axis_type="datetime", title="Time Series Plot Python Bokeh Example by PratikPathak.com")
p.line(x, y, line_width=2)
output_notebook()
show(p)

7. Linked Brushing

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
source = ColumnDataSource(data=dict(x1=x1, y1=y1, x2=x2, y2=y2))
p1 = figure(title="Scatter Plot 1")
p1.circle('x1', 'y1', source=source)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com")
p2.circle('x2', 'y2', source=source)
output_notebook()
show(p1, p2)

8. Hover Tooltips

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import HoverTool
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Hover Tooltips Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=15, fill_color="navy", line_color="white", alpha=0.5)
hover = HoverTool(tooltips=[("(x,y)", "(@x, @y)")])
p.add_tools(hover)
output_notebook()
show(p)

9. Annotations

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Arrow, VectorRenderer, Label
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Annotations Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=15, fill_color="navy", line_color="white", alpha=0.5)
arrow = Arrow(x_start=2, y_start=4, x_end=3, y_end=5, line_width=2, line_color="red")
label = Label(x=3, y=6, text="This is a label", render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=0.5)
p.add_layout(arrow)
p.add_layout(label)
output_notebook()
show(p)

10. Custom Glyphs

from bokeh.plotting import figure, show, output_notebook
from bokeh.models.glyphs import Asterisk
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Custom Glyphs Python Bokeh Example by PratikPathak.com")
p.add_glyph(x, y, Asterisk(size=20, line_color="red", fill_color="yellow"))
output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

11. Gridlines and Axes

from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Gridlines and Axes Python Bokeh Example by PratikPathak.com", x_range=(0, 6), y_range=(0, 8))
p.grid.grid_line_color = "grey"
p.grid.grid_line_dash = [6, 4]
p.xaxis.axis_label = "X-axis"
p.yaxis.axis_label = "Y-axis"
p.line(x, y, line_width=2)
output_notebook()
show(p)

12. Legend

from bokeh.plotting import figure, show, output_notebook
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p = figure(title="Legend Python Bokeh Example by PratikPathak.com")
p.line(x1, y1, line_width=2, color="red", legend_label="Line 1")
p.line(x2, y2, line_width=2, color="blue", legend_label="Line 2")
p.legend.location = "top_left"
output_notebook()
show(p)

13. Categorical Plots

from bokeh.plotting import figure, show, output_notebook
fruits = ["Apples", "Pears", "Nectarines", "Plums", "Grapes", "Strawberries"]
counts = [5, 3, 4, 2, 4, 6]
p = figure(x_range=fruits, title="Categorical Plots Python Bokeh Example by PratikPathak.com")
p.vbar(x=fruits, top=counts, width=0.9)
p.xaxis.axis_label = "Fruit"
p.yaxis.axis_label = "Count"
p.xaxis.axis_label_text_font_size = "12pt"
p.yaxis.axis_label_text_font_size = "12pt"
output_notebook()
show(p)

14. Subplots

from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1 Python Bokeh Example by PratikPathak.com")
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com")
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
grid = gridplot([[p1, p2]], plot_width=400, plot_height=400)
output_notebook()
show(grid)

15. Interactive Plots

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, HoverTool, BoxSelectTool
import numpy as np
x = np.random.random(1000)
y = np.random.random(1000)
source = ColumnDataSource(data=dict(x=x, y=y))
p = figure(title="Interactive Plots Python Bokeh Example by PratikPathak.com", tools="hover,box_select")
p.circle('x', 'y', source=source, size=3, color="navy", alpha=0.5)
hover = HoverTool(tooltips=[("(x,y)", "(@x, @y)")])
p.add_tools(hover)
output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

16. Linked Panning and Zooming

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Range1d
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1 Python Bokeh Example by PratikPathak.com", x_range=Range1d(0, 6), y_range=Range1d(0, 8))
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com", x_range=p1.x_range, y_range=p1.y_range)
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
output_notebook()
show(p1, p2)

17. Linked Axis Ranges

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Range1d
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1", x_range=(0, 6), y_range=(0, 8))
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2", x_range=p1.x_range, y_range=p1.y_range)
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
output_notebook()
show(p1, p2)

18. DateTime Axis

from bokeh.plotting import figure, show, output_notebook
from datetime import datetime, timedelta
start = datetime(2023, 1, 1)
end = start + timedelta(days=30)
x = [start + timedelta(days=i) for i in range((end-start).days)]
y = [10, 15, 8, 12, 6, 18, 9, 14, 7, 11, 5, 16, 8, 13, 6]
p = figure(x_axis_type="datetime", title="Datetime Axis Python Bokeh Example by PratikPathak.com")
p.line(x, y, line_width=2)
output_notebook()
show(p)

19. Heatmap

from bokeh.plotting import figure, show, output_notebook
import numpy as np
data = np.random.rand(10, 10)
p = figure(title="Heatmap Python Bokeh Example by PratikPathak.com")
p.image(image=[data], x=0, y=0, dw=10, dh=10, palette="Viridis256")
output_notebook()
show(p)

20. Streamgraph

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
import numpy as np
# Generate some sample data
x = np.linspace(0, 10, 100)
y1 = np.cumsum(np.random.randn(100))
y2 = np.cumsum(np.random.randn(100))
y3 = np.cumsum(np.random.randn(100))
y4 = np.cumsum(np.random.randn(100))
y5 = np.cumsum(np.random.randn(100))
source = ColumnDataSource(data=dict(x=x, y1=y1, y2=y2, y3=y3, y4=y4, y5=y5))
p = figure(title="Streamgraph Python Bokeh Example by PratikPathak.com")
p.area(x='x', y1='y1', y2='y2', y3='y3', y4='y4', y5='y5', source=source, line_color=None)
output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

21. Polar Plot

from bokeh.plotting import figure, show, output_notebook
import numpy as np
r = np.linspace(0.1, 1, 10)
theta = np.linspace(0, 2*np.pi, 10)
p = figure(title="Polar Plot Python Bokeh Example by PratikPathak.com", plot_width=600, plot_height=600, x_range=(-1.2, 1.2), y_range=(-1.2, 1.2), toolbar_location=None)
p.polar(r, theta, color="navy", alpha=0.5, line_width=2)
output_notebook()
show(p)

22. Donut Chart

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
labels = ["A", "B", "C", "D"]
values = [10, 15, 8, 12]
source = ColumnDataSource(data=dict(labels=labels, values=values))
p = figure(title="Donut Chart Python Bokeh Example by PratikPathak.com", x_range=labels)
p.wedge(x=0, y=1, radius=0.4, start_angle=0.6, end_angle=2.6, color=["red", "green", "blue", "yellow"], legend_field="labels")
p.wedge(x=0, y=1, inner_radius=0.3, outer_radius=0.4, start_angle=0.6, end_angle=2.6, color="white")
p.axis.visible = False
p.grid.grid_line_color = None
output_notebook()
show(p)

23. Treemap

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import TreemapRenderer, ColumnDataSource
import pandas as pd

# Sample data
data = pd.DataFrame({
    'label': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'],
    'parent': ['', 'A', 'A', 'B', 'B', 'C', 'C', 'D'],
    'value': [10, 5, 4, 3, 2, 1, 1, 1]
})

source = ColumnDataSource(data)
p = figure(title="Treemap Python Bokeh Example by PratikPathak.com")
treemap = TreemapRenderer(
    source=source,
    label='label',
    parent='parent',
    value='value',
    color_discrete_sequence=["#e6550d", "#3182bd", "#31a354", "#756bb1", "#636363", "#9e9ac8", "#de2d26", "#fd8d3c"],
)
p.add_layout(treemap)
output_notebook()
show(p)

If you get any error, make sure you have installed Python pandas by using the “pip install pandas” command

24. Network Plot

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, HoverTool, NodesAndLinkedEdges
import networkx as nx

# Sample data
nodes = ['A', 'B', 'C', 'D', 'E', 'F']
edges = [('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F')]
G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

node_positions = nx.spring_layout(G)
node_x = [node_positions[node][0] for node in G.nodes()]
node_y = [node_positions[node][1] for node in G.nodes()]
node_color = ['red', 'green', 'blue', 'yellow', 'purple', 'orange']

source = ColumnDataSource(data=dict(
    x=node_x,
    y=node_y,
    color=node_color,
    node=nodes
))

p = figure(title="Network Plot Python Bokeh Example by PratikPathak.com", x_range=(-1.1, 1.1), y_range=(-1.1, 1.1))
p.add_tools(HoverTool(tooltips=[("Node", "@node")]))
p.circle('x', 'y', size=15, color='color', source=source)

edge_x = []
edge_y = []
for start, end in edges:
    x0, y0 = node_positions[start]
    x1, y1 = node_positions[end]
    edge_x.append(x0)
    edge_x.append(x1)
    edge_x.append(None)
    edge_y.append(y0)
    edge_y.append(y1)
    edge_y.append(None)

p.multi_line(edge_x, edge_y, color="black", alpha=0.5, line_width=1)

output_notebook()
show(p)

25. Sankey Diagram

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Sankey, ColumnDataSource

# Sample data
flows = [
    ('A', 'X', 5),
    ('B', 'X', 3),
    ('A', 'Y', 2),
    ('B', 'Y', 4),
    ('X', 'C', 4),
    ('X', 'D', 3),
    ('Y', 'C', 2),
    ('Y', 'D', 4)
]

source = ColumnDataSource(data=dict(
    source=[flow[0] for flow in flows],
    target=[flow[1] for flow in flows],
    value=[flow[2] for flow in flows]
))

p = figure(plot_width=800, plot_height=400, title="Sankey Diagram Python Bokeh Example by PratikPathak.com")
sankey = Sankey(source=source, label_text_color="white", label_text_font_size="8pt")
p.renderers.append(sankey)

output_notebook()
show(p)

Live Preview | Source Code | 🌿 Contribute

26. Chord Diagram

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, CategoricalColorMapper
import numpy as np

# Sample data
nodes = ['A', 'B', 'C', 'D', 'E', 'F']
connections = [
    ('A', 'B', 0.5), ('A', 'C', 0.3), ('A', 'D', 0.2),
    ('B', 'C', 0.4), ('B', 'D', 0.3), ('B', 'E', 0.3),
    ('C', 'D', 0.2), ('C', 'E', 0.3), ('C', 'F', 0.5),
    ('D', 'E', 0.2), ('D', 'F', 0.3), ('E', 'F', 0.4)
]

source = ColumnDataSource(data=dict(
    start=np.array([con[0] for con in connections]),
    end=np.array([con[1] for con in connections]),
    value=np.array([con[2] for con in connections])
))

p = figure(title="Chord Diagram Python Bokeh Example by PratikPathak.com", plot_width=800, plot_height=800)
chord = p.chord(
    source=source, 
    start_angle=np.pi / 2,
    direction="clockwise",
    colors=CategoricalColorMapper(factors=nodes, palette="Spectral11")
)

output_notebook()
show(p)

How to Contribute?

Feel free to open a PR request on our GitHub repo.

Steps to contribute:

  1. Fork the repo
  2. Make changes in the Forked repo and save
  3. Open a Pull Request
  4. That’s it 😄!

🌿 Contribute

Conclusion

In this Repo, I have shared 25+ Python Bokeh examples that can help you learn Python Bokeh. Feel free to contribute to our GitHub repo and keep it updated.


Also published here.