Develop XR With Oracle Cloud Ep 2: Property Graphs, Data Visualization, and Metaverse by@paulparkinson

Develop XR With Oracle Cloud Ep 2: Property Graphs, Data Visualization, and Metaverse

image
Paul Parkinson HackerNoon profile picture

Paul Parkinson

Architect and Developer Advocate, Microservices with Oracle Database. XR/Hololens Developer

In part 2 of this series on developing XR applications and experiences, explore Property Graphs and Analytics, Data Visualization, and Metaverse collaboration.

This is the second piece in a series on developing XR applications and experiences using Oracle.
The first piece can be foundhere.

Again, I will focus on applications developed with Oracle database and cloud technologies, HoloLens 2 (Microsoft Mixed Reality Headset), MRTK (Mixed Reality Toolkit) APIs (v2.7.2), and Unity (v2021.1.20f) platform.

Throughout the blog, I will reference a corresponding demo video below.

https://www.youtube.com/watch?v=Vitglm4WiEI

Extended Reality (XR), Metaverse, and HoloLens

For any new reader, the first piece of this series, an overview of XR and Hololens, discusses some useful background information.

The first blog in this series was based on a data-driven microservices workshop and described a number of aspects that will be present in the metaverse such as online shopping, DevOps, etc. I will continue to delve into these areas in this series, focusing a little more on collaboration as we progress.

The graphs in this workshop include models, notebooks, etc. These resources can be shared and used to foster active collaboration (even in real-time) remotely.

These functionalities will be expanded upon and extended to concepts such as digital doubles in these future pieces.

This blog will not go into property graph concepts deeply and will instead focus on the XR-enablement of them using examples in existing graph workshops.

Basics of Creating Property Graphs

There are essentially four parts or stages to (visual) graph analysis:

  1. The actual data

  2. The relationships and graph modeling of that data

  3. Notebooks written (i.e., in PGQL) for analysis

  4. Visualization of the notebook output in various layouts and highlights

The creation of a property graph model from existing tables looks like this:

image

Forced Graph Layout and Community Detection

The following force graph layout shows community detection, specifically strongly connected components, and the Kosaraj algorithm for community detection in the case.

image

The following is an XR HoloLens representation of the same case, where vertex and edge labels are shown, as well as the directional relationship of those edges and objects. All of which can be manipulated via GGV (gaze, gesture, and voice).

image

Concentric Graph Layout With Rotation and Movement

There are numerous types of layouts, each with its own customization settings, tailored for viewing different aspects from different vantage points.  Here we see a Concentric layout.

image

The following is an XR Hololens representation of the same.  As with all of the XR representations discussed, it is possible to manipulate and analyze the graph visualizations through GGV. However, in this case, I have also added rotation and movement to the final visual representation in order to provide multiple angles and position the graph in a way as best suited to analysis as possible.  I've also added spatial audio in this case just for fun though I will be exploring it as an additional tool for analysis and detection as well.

image

Visual Data and Graph Modeling

Finally, the video shows a concept for visual data and graph modeling where data sources (in this case, basic tables, but not limited to such) are represented as objects (cubes) that can be dropped on a common platform/dock. This action results in processing on the Oracle database to create a graph model, correlations, commonalities, etc., and produce as output other objects that can, in turn, be studied and used in further combinations and analysis.

image

Additional Thoughts

The use cases for properties graphs are literally endless and I have only scratched the surface of how they can be visualized in XR.  I look forward to putting out more blogs on this topic and other areas of XR with Oracle Cloud and Database soon.

Please see the articles I publish for more information on Oracle converged database as well as various topics around microservices, observability, transaction processing, etc. Also, please feel free to contact me with any questions or suggestions for new blogs and videos as I am very open to suggestions. Thanks for reading and watching.


Welcome to the Decentralized Internet Contest!

In part 2 of this series on developing XR applications and experiences, explore Property Graphs and Analytics, Data Visualization, and Metaverse collaboration.

This is the second piece in a series on developing XR applications and experiences using Oracle.
The first piece can be foundhere.

Again, I will focus on applications developed with Oracle database and cloud technologies, HoloLens 2 (Microsoft Mixed Reality Headset), MRTK (Mixed Reality Toolkit) APIs (v2.7.2), and Unity (v2021.1.20f) platform.

Throughout the blog, I will reference a corresponding demo video below.

https://www.youtube.com/watch?v=Vitglm4WiEI

Extended Reality (XR), Metaverse, and HoloLens

For any new reader, the first piece of this series, an overview of XR and Hololens, discusses some useful background information.

The first blog in this series was based on a data-driven microservices workshop and described a number of aspects that will be present in the metaverse such as online shopping, DevOps, etc. I will continue to delve into these areas in this series, focusing a little more on collaboration as we progress.

The graphs in this workshop include models, notebooks, etc. These resources can be shared and used to foster active collaboration (even in real-time) remotely.

These functionalities will be expanded upon and extended to concepts such as digital doubles in these future pieces.

This blog will not go into property graph concepts deeply and will instead focus on the XR-enablement of them using examples in existing graph workshops.

Basics of Creating Property Graphs

There are essentially four parts or stages to (visual) graph analysis:

  1. The actual data

  2. The relationships and graph modeling of that data

  3. Notebooks written (i.e., in PGQL) for analysis

  4. Visualization of the notebook output in various layouts and highlights

The creation of a property graph model from existing tables looks like this:

image

Forced Graph Layout and Community Detection

The following force graph layout shows community detection, specifically strongly connected components, and the Kosaraj algorithm for community detection in the case.

image

The following is an XR HoloLens representation of the same case, where vertex and edge labels are shown, as well as the directional relationship of those edges and objects. All of which can be manipulated via GGV (gaze, gesture, and voice).

image

Concentric Graph Layout With Rotation and Movement

There are numerous types of layouts, each with its own customization settings, tailored for viewing different aspects from different vantage points.  Here we see a Concentric layout.

image

The following is an XR Hololens representation of the same.  As with all of the XR representations discussed, it is possible to manipulate and analyze the graph visualizations through GGV. However, in this case, I have also added rotation and movement to the final visual representation in order to provide multiple angles and position the graph in a way as best suited to analysis as possible.  I've also added spatial audio in this case just for fun though I will be exploring it as an additional tool for analysis and detection as well.

image

Visual Data and Graph Modeling

Finally, the video shows a concept for visual data and graph modeling where data sources (in this case, basic tables, but not limited to such) are represented as objects (cubes) that can be dropped on a common platform/dock. This action results in processing on the Oracle database to create a graph model, correlations, commonalities, etc., and produce as output other objects that can, in turn, be studied and used in further combinations and analysis.

image

Additional Thoughts

The use cases for properties graphs are literally endless and I have only scratched the surface of how they can be visualized in XR.  I look forward to putting out more blogs on this topic and other areas of XR with Oracle Cloud and Database soon.

Please see the articles I publish for more information on Oracle converged database as well as various topics around microservices, observability, transaction processing, etc. Also, please feel free to contact me with any questions or suggestions for new blogs and videos as I am very open to suggestions. Thanks for reading and watching.

Comments

Signup or Login to Join the Discussion

Tags

Related Stories