paint-brush
Unlocking SAP BusinessObjects Data: The Full Guide to Retrieving Documents with Pythonby@luca1iu
334 reads
334 reads

Unlocking SAP BusinessObjects Data: The Full Guide to Retrieving Documents with Python

by Luca LiuJanuary 14th, 2024
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This blog post delves into the world of SAP BusinessObjects and Python, demonstrating a step-by-step approach to retrieve a list of documents effortlessly.
featured image - Unlocking SAP BusinessObjects Data: The Full Guide to Retrieving Documents with Python
Luca Liu HackerNoon profile picture

In the realm of business intelligence and data analytics, SAP BusinessObjects stands tall as a powerful tool, empowering organizations to transform raw data into actionable insights. While its capabilities are robust, accessing and managing data programmatically can offer even greater flexibility. This blog post delves into the world of SAP BusinessObjects and Python, demonstrating a step-by-step approach to retrieve the list of documents effortlessly.

Why This Matters

In SAP BusinessObjects, years of operation can result in a cluttered mess of documents and folders. Cleaning up this chaos is crucial for data teams. By using Python to retrieve the details like path and last modified date and status for all documents, you gain a powerful tool.

Python Solution

Part 1: Authentication

To initiate the authentication process, please replace the placeholder values for "username," "password," and "localhost" with your specific configuration details.

import requests
import pandas as pd
import xml.etree.ElementTree as ET

# define the login request parameters
username = 'username'
password = 'password'
localhost = 'localhost'

auth_type = 'secEnterprise'
login_url = 'http://{}:6405/biprws/logon/long'.format(localhost)
login_data = f'<attrs xmlns="http://www.sap.com/rws/bip"><attr name="userName" type="string">{username}</attr><attr name="password" type="string">{password}</attr><attr name="auth" type="string" possibilities="secEnterprise,secLDAP,secWinAD,secSAPR3">{auth_type}</attr></attrs>'
login_headers = {'Content-Type': 'application/xml'}

# send the login request and retrieve the response
login_response = requests.post(login_url, headers=login_headers, data=login_data)

# parse the XML response and retrieve the logonToken
root = ET.fromstring(login_response.text)
logon_token = root.find('.//{http://www.sap.com/rws/bip}attr[@name="logonToken"]').text
api_headers = {'Content-Type': 'application/xml', 'X-SAP-LogonToken': logon_token}

The code focuses on the initial authentication process, forming a secure connection to the server. User credentials, server details, and authentication type are configured, and a POST request is made to the specified login URL. The XML response from the server is parsed to extract the crucial logonToken. This token is then employed to construct headers for subsequent API requests, ensuring authenticated access to SAP BusinessObjects.

Part 2: Data Retrieval and DataFrame Creation

Previewing Retrieved Data: First Document's Name

As we venture into data retrieval from SAP BusinessObjects, a peek at the obtained information reveals its structure. This Python snippet fetchs all the information about documents from the server. If you run the code, it will print the name of the first document.

url = "http://{}:6405/biprws/raylight/v1/documents/".format(localhost)
response = requests.get(url,api_headers)
root = ET.fromstring(response.text)

first_docu_key = root.findall('document')[0][2].tag
first_docu_item = root.findall('document')[0][2].text
print(first_docu_key, ":", first_docu_item)

Data Transformation Functions: Transform to DataFrame

The Python functions, get_dataframe_from_response and get_all_dataframe, work together to simplify SAP BusinessObjects data retrieval. The first function transforms XML data into a structured pandas DataFrame, capturing document attributes. The second function efficiently handles scenarios with documents exceeding a single request's limit by appending multiple DataFrames. Collectively, these functions streamline the conversion of XML to DataFrame and provide an easy solution for handling a large number of documents.

def get_dataframe_from_response(response):
    # Parse the XML data
    root = ET.fromstring(response.text)
    # Extract the data into a list of dictionaries
    res = []
    for item in root.findall('document'):
        doc_dict = {}
        for elem in item.iter():
            if elem.text is not None:
                doc_dict[elem.tag] = elem.text
        res.append(doc_dict)
    # Convert the list of dictionaries to a pandas dataframe
    df = pd.DataFrame(res)
    return df

def get_all_dataframe(url):
    documents = []
    for i in range(50):
        offset = i * 50
        url_offset = url + "?offset={}&limit=50".format(offset)
        response = requests.get(url_offset, headers=api_headers)
        df = get_dataframe_from_response(response=response)
        if df.empty:
            break
        else:
            documents.append(df)
    dataframe = pd.concat(documents, axis=0)
    return dataframe

Retrieve detailed information about SAP BusinessObjects documents effortlessly using a single line of Python code. Utilize the get_all_dataframe function, and the resulting df_documents DataFrame provides a straightforward overview of document attributes.

url = "http://{}:6405/biprws/raylight/v1/documents/".format(localhost)
df_documents = get_all_dataframe(url=url)
print(df_documents.head())

Showcasing df_documents: What follows is a glimpse into the dataframe structure

document

id

cuid

name

folderId

description


10283

AfZQen_U5hGgHqB8

Revenue Report

10782

NaN


12012

AUgbex_JocxFfvSFw

Sales Report

11931

NaN


12435

AaGqyXfPrFIuC1Eac

Cost Report

11965

NaN


11232

ATvl8iD_ii2HdxkKEY

Inventory Report

11038

NaN


11023

cyslJAAy.JAJBB13hE

Finance Report

11021

NaN

Part 3: Document Details Extraction

If you need additional details such as the document's path, last updated time, scheduling status, size, and refresh status, utilize the following function. This function fetches the specified details for each document in the df_documents DataFrame, providing a more comprehensive overview of each entry.

def get_document_detail(documentID, detail):
    url = 'http://{}:6405/biprws/raylight/v1/documents/{}'.format(localhost, documentID)
    res = requests.get(url, headers={
        "Accept": "application/json",
        "Content-Type": "application/json",
        "X-SAP-LogonToken": logon_token
    }).json()
    return res['document'][detail]

def get_more_information_from_documents(df):
		details = ['path', 'updated', 'scheduled', 'size', 'refreshOnOpen']
		for detail in details:
        df[detail] = [get_document_detail(id, detail) for id in df['id'].values]
    return df

df_documents_more_info = get_more_information_from_documents(df_documents)

Showcasing df_documents_more_info:

document

id

cuid

name

folderId

description

path

updated

scheduled

size

refreshOnOpen


10283

AfZQen_U5hGgHqB8

Revenue Report

10782

NaN

Public Folders/Test

2023-06-04T08:24:23.461Z

false

64613

true


12012

AUgbex_JocxFfvSFw

Sales Report

11931

NaN

Public Folders/Test

2023-06-04T08:30:17.907Z

false

64481

true


12435

AaGqyXfPrFIuC1Eac

Cost Report

11965

NaN

Public Folders/Test

2020-06-22T02:06:55.858Z

false

65471

true


11232

ATvl8iD_ii2HdxkKEY

Inventory Report

11038

NaN

Public Folders/Test

2023-07-17T08:06:38.444Z

false

171294

true


11023

cyslJAAy.JAJBB13hE

Finance Report

11021

NaN

Public Folders/Test/Test

2023-07-08T03:04:05.241Z

false

168952

true


Thank you for taking the time to explore data-related insights with me. I appreciate your engagement. If you find this information helpful, I invite you to follow me or connect with me on LinkedIn. Happy exploring!👋