paint-brush
Volume 3: Nuclear Fusionby@isaacasimov
6,042 reads
6,042 reads

Volume 3: Nuclear Fusion

by Isaac AsimovNovember 1st, 2022
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

The sun is a vast fusion furnace 866,000 miles across, but it is a controlled one. The sun compresses itself, through its equally enormous gravitational field, into huge densities and temperatures at its center. To achieve fusion ignition, therefore, temperatures must be considerably higher than those at the center of the sun. There is, as far as scientists know, no conceivable way of concentrating a high gravitational field in the absence of the required mass, and the creation of controlled fusion on earth must therefore be done without the aid of gravity.

People Mentioned

Mention Thumbnail
Mention Thumbnail

Coin Mentioned

Mention Thumbnail
featured image - Volume 3: Nuclear Fusion
Isaac Asimov HackerNoon profile picture

Worlds Within Worlds: The Story of Nuclear Energy, Volume 3 (of 3), by Isaac Asimov is part of HackerNoon’s Book Blog Post series. You can jump to any chapter in this book here. Volume III, NUCLEAR FUSION: The Energy of the Sun

NUCLEAR FUSION

The Energy of the Sun

As it happens, though, nuclear fission is not the only route to useful nuclear energy.

Aston’s studies in the 1920s had shown that it was the middle-sized nuclei that were most tightly packed. Energy would be given off if middle-sized nuclei were produced from either extreme. Not only would energy be formed by the breakup of particularly massive nuclei through fission, but also through the combination of small nuclei to form larger ones (“nuclear fusion”).

In fact, from Aston’s studies it could be seen that, mass for mass, nuclear fusion would produce far more energy than nuclear fission. This was particularly true in the conversion of hydrogen to helium; that is, the conversion of the individual protons of 4 separate hydrogen nuclei into the 2-proton—2-neutron structure of the helium nucleus. A gram of hydrogen, undergoing fusion to helium, would deliver some fifteen times as much energy as a gram of uranium undergoing fission.

As early as 1920, the English astronomer Arthur Stanley Eddington (1882-1944) had speculated that the sun’s energy might be derived from the interaction of subatomic particles. Some sort of nuclear reaction seemed, by then, to be the most reasonable way of accounting for the vast energies constantly being produced by the sun.

The speculation became more plausible with each year. Eddington himself studied the structure of stars, and by 1926 had produced convincing theoretical reasons for supposing that the center of the sun was at enormous densities and temperatures. A temperature of some 15,000,000 to 20,000,000°C seemed to characterize the sun’s center.

At such temperatures, atoms could not exist in earthly fashion. Held together by the sun’s strong gravitational field, 147they collided with such energy that all or almost all their electrons were stripped off, and little more than bare nuclei were left. These bare nuclei could approach each other much more closely than whole atoms could (which was why the center of the sun was so much more dense than earthly matter could be). The bare nuclei, smashing together at central-sun temperatures, could cling together and form more complex nuclei. Nuclear reactions brought about by such intense heat (millions of degrees) are called “thermonuclear reactions”.

As the 1920s progressed further studies of the chemical structure of the sun showed it to be even richer in hydrogen than had been thought. In 1929 the American astronomer Henry Norris Russell (1877-1957) reported evidence that the sun was 60% hydrogen in volume. (Even this was too conservative; 80% is considered more nearly correct now.) If the sun’s energy were based on nuclear reactions at all, then it had to be the result of hydrogen fusion. Nothing else was present in sufficient quantity to be useful as a fuel.

More and more was learned about the exact manner in which nuclei interacted and about the quantity of energy given off in particular nuclear reactions. It became possible to calculate what might be going on inside the sun by considering the densities and temperatures present, the kind and number of different nuclei available, and the quantity of energy that must be produced. In 1938 the German-American physicist Hans Albrecht Bethe (1906- ) and the German astronomer Carl Friedrich von Weizsäcker (1912- ) independently worked out the possible reactions, and hydrogen fusion was shown to be a thoroughly practical way of keeping the sun going.

Thanks to the high rate of energy production by thermonuclear reactions and to the vast quantity of hydrogen in the sun, not only has it been possible for the sun to have been radiating energy for the last 5,000,000,000 years or so, 148but it will continue to radiate energy in the present fashion for at least 5,000,000,000 years into the future.

Hans Bethe

Even so, the sheer quantity of what is going on in the sun is staggering in earthly terms. In the sun 650,000,000 tons of hydrogen are converted into helium every second, and in the process each second sees the disappearance of 4,600,000 tons of mass.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books. This book is part of the public domain.

Isaac Asimov. 2015. Worlds Within Worlds: The Story of Nuclear Energy, Volume 3 (of 3). Urbana, Illinois: Project Gutenberg. Retrieved May 2022 from https://www.gutenberg.org/files/49821/49821-h/49821-h.htm#c36

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.