**Launch your smart contract idea in just 4 days!**

Unitarity Bound on Dark Matter in Low-temperature Reheating Scenarios: Acknowledgments and Reference by@cosmological

160 reads

by Cosmological thinking: time, space and universal causation May 25th, 2024

This paper is available on arxiv under CC 4.0 license.

**Authors:**

(1) Nicolas Bernal, New York University Abu Dhabi;

(2) Partha Konar, Physical Research Laboratory;

(3) Sudipta Show, Physical Research Laboratory.

- Abstract and Intro
- S-matrix: Unitarity and its Consequences
- Dark Matter Annihilation and Unitarity Bound
- Low-temperature Reheating
- Freeze-out with a Low-temperature Reheating
- Summary and Conclusion
- Acknowledgments and References

The authors acknowledge the hospitality during the IMHEP 23 at IOP, Bhubaneswar, where this project was initiated. Computational work was performed on the Param Vikram-1000 High-Performance Computing Cluster and TDP resources at the Physical Research Laboratory (PRL).

[1] G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (2018) 045002 [1605.04909].

[2] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].

[3] M. Drees, Dark Matter Theory, PoS ICHEP2018 (2019) 730 [1811.06406].

[4] V.A. Rubakov and D.S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory, World Scientific, Singapore (2017), 10.1142/10447.

[5] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365].

[6] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [1610.08297].

[7] M. Nori, R. Murgia, V. Irˇsiˇc, M. Baldi and M. Viel, Lyman-α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies, Mon. Not. Roy. Astron. Soc. 482 (2019) 3227 [1809.09619].

[8] S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407.

[9] B. Moore, An Upper limit to the mass of black holes in the halo of our galaxy, Astrophys. J. Lett. 413 (1993) L93 [astro-ph/9306004].

[10] B.J. Carr and M. Sakellariadou, Dynamical constraints on dark compact objects, Astrophys. J. 516 (1999) 195.

[11] V. Irˇsiˇc et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [1702.01764].

[12] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615.

[13] L. Hui, Unitarity bounds and the cuspy halo problem, Phys. Rev. Lett. 86 (2001) 3467 [astro-ph/0102349].

[14] I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [1703.00478].

[15] B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [1407.7874].

[16] J. Smirnov and J.F. Beacom, TeV-Scale Thermal WIMPs: Unitarity and its Consequences, Phys. Rev. D 100 (2019) 043029 [1904.11503].

[17] A. Ghosh, D. Ghosh and S. Mukhopadhyay, Asymmetric dark matter from semi-annihilation, JHEP 08 (2020) 149 [2004.07705].

[18] R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng, GeV-scale thermal WIMPs: Not even slightly ruled out, Phys. Rev. D 98 (2018) 023016 [1805.10305].

[19] K. Dutta, A. Ghosh, A. Kar and B. Mukhopadhyaya, MeV to multi-TeV thermal WIMPs: most conservative limits, JCAP 08 (2023) 071 [2212.09795].

[20] B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165.

[21] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [1703.07364].

[22] P. Konar, A. Mukherjee, A.K. Saha and S. Show, Linking pseudo-Dirac dark matter to radiative neutrino masses in a singlet-doublet scenario, Phys. Rev. D 102 (2020) 015024 [2001.11325].

[23] T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [0811.0172].

[24] T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [0907.1007].

[25] F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [1003.5912].

[26] G. B´elanger, K. Kannike, A. Pukhov and M. Raidal, Z3 Scalar Singlet Dark Matter, JCAP 01 (2013) 022 [1211.1014].

[27] G. B´elanger, K. Kannike, A. Pukhov and M. Raidal, Minimal semi-annihilating ZN scalar dark matter, JCAP 06 (2014) 021 [1403.4960].

[28] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191.

[29] E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43.

[30] D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [1602.04219].

[31] M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of Cannibal Dark Matter, JHEP 12 (2016) 039 [1607.03108].

[32] Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [1402.5143].

[33] S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z3 symmetry, JHEP 09 (2015) 063 [1505.00960].

[34] N. Bernal, C. Garc´ıa-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 04 (2015) 012 [1501.01973].

[35] N. Bernal, C. Garc´ıa-Cely and R. Rosenfeld, Z3 WIMP and SIMP Dark Matter from a Global U(1) Breaking, Nucl. Part. Phys. Proc. 267-269 (2015) 353.

[36] P. Ko and Y. Tang, Self-interacting scalar dark matter with local Z3 symmetry, JCAP 05 (2014) 047 [1402.6449].

[37] S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [1702.07860].

[38] X. Chu and C. Garc´ıa-Cely, Self-interacting Spin-2 Dark Matter, Phys. Rev. D 96 (2017) 103519 [1708.06764].

[39] N. Bernal, X. Chu, C. Garc´ıa-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [1510.08063].

[40] N. Yamanaka, S. Fujibayashi, S. Gongyo and H. Iida, Dark matter in the hidden gauge theory, 1411.2172.

[41] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [1411.3727].

[42] H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z’ -portal, Phys. Lett. B 748 (2015) 316 [1504.00745].

[43] M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [1507.01590].

[44] N. Bernal and X. Chu, Z2 SIMP Dark Matter, JCAP 01 (2016) 006 [1510.08527].

[45] M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, Observational Constraints on Decoupled Hidden Sectors, Phys. Rev. D 94 (2016) 063506 [1604.02401].

[46] N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95 (2017) 115023 [1702.04906].

[47] M. Heikinheimo, T. Tenkanen and K. Tuominen, WIMP miracle of the second kind, Phys. Rev. D 96 (2017) 023001 [1704.05359].

[48] N. Bernal, C. Cosme and T. Tenkanen, Phenomenology of Self-Interacting Dark Matter in a Matter-Dominated Universe, Eur. Phys. J. C 79 (2019) 99 [1803.08064].

[49] N. Bernal, A. Chatterjee and A. Paul, Non-thermal production of Dark Matter after Inflation, JCAP 12 (2018) 020 [1809.02338].

[50] E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [1512.04545].

[51] E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [1706.05381].

[52] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123].

[53] N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072].

[54] C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys. 21 (2004) 689 [hep-ph/0402033].

[55] G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230].

[56] M. Drees, H. Iminniyaz and M. Kakizaki, Abundance of cosmological relics in low-temperature scenarios, Phys. Rev. D 73 (2006) 123502 [hep-ph/0603165].

[57] C.E. Yaguna, An intermediate framework between WIMP, FIMP, and EWIP dark matter, JCAP 02 (2012) 006 [1111.6831].

[58] L. Roszkowski, S. Trojanowski and K. Turzy´nski, Neutralino and gravitino dark matter with low reheating temperature, JHEP 11 (2014) 146 [1406.0012].

[59] K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [1402.2846].

[60] M. Drees and F. Hajkarim, Dark Matter Production in an Early Matter Dominated Era, JCAP 02 (2018) 057 [1711.05007].

[61] N. Bernal, C. Cosme, T. Tenkanen and V. Vaskonen, Scalar singlet dark matter in non-standard cosmologies, Eur. Phys. J. C 79 (2019) 30 [1806.11122].

[62] C. Cosme, M. Dutra, T. Ma, Y. Wu and L. Yang, Neutrino portal to FIMP dark matter with an early matter era, JHEP 03 (2021) 026 [2003.01723].

[63] P. Ghosh, P. Konar, A.K. Saha and S. Show, Self-interacting freeze-in dark matter in a singlet doublet scenario, JCAP 10 (2022) 017 [2112.09057].

[64] P. Arias, N. Bernal, D. Karamitros, C. Maldonado, L. Roszkowski and M. Venegas, New opportunities for axion dark matter searches in nonstandard cosmological models, JCAP 11 (2021) 003 [2107.13588].

[65] N. Bernal and Y. Xu, WIMPs during reheating, JCAP 12 (2022) 017 [2209.07546].

[66] P.N. Bhattiprolu, G. Elor, R. McGehee and A. Pierce, Freezing-in hadrophilic dark matter at low reheating temperatures, JHEP 01 (2023) 128 [2210.15653].

[67] M.R. Haque, D. Maity and R. Mondal, WIMPs, FIMPs, and Inflaton phenomenology via reheating, CMB and ∆Nef f , JHEP 09 (2023) 012 [2301.01641].

[68] D.K. Ghosh, A. Ghoshal and S. Jeesun, Axion-like particle (ALP) portal freeze-in dark matter confronting ALP search experiments, 2305.09188.

[69] J. Silva-Malpartida, N. Bernal, J. Jones-P´erez and R.A. Lineros, From WIMPs to FIMPs with low reheating temperatures, JCAP 09 (2023) 015 [2306.14943].

[70] P. Arias, N. Bernal, J.K. Osi´nski, L. Roszkowski and M. Venegas, Revisiting signatures of thermal axions in nonstandard cosmologies, 2308.01352.

[71] P.K. Das, P. Konar, S. Kundu and S. Show, Jet substructure probe to unfold singlet-doublet dark matter in the presence of non-standard cosmology, JHEP 06 (2023) 198 [2301.02514].

[72] A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev. D 60 (1999) 063516 [astro-ph/9903484].

[73] M.Y. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav. 23 (2006) 1875 [astro-ph/0406621].

[74] D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP 06 (2009) 023 [0904.3331].

[75] T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter, and density perturbation from primordial black holes, Phys. Rev. D 89 (2014) 103501 [1401.1909].

[76] R. Allahverdi, J. Dent and J. Osi´nski, Nonthermal production of dark matter from primordial black holes, Phys. Rev. D 97 (2018) 055013 [1711.10511].

[77] O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black Hole Genesis of Dark Matter, JCAP 04 (2018) 009 [1712.07664].

[78] L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: Dark Matter of (almost) any Mass and Baryonic Matter from the Evaporation of Primordial Black Holes weighing a Ton (or less), JCAP 05 (2019) 005 [1812.10606].

[79] D. Hooper, G. Krnjaic and S.D. McDermott, Dark Radiation and Superheavy Dark Matter from Black Hole Domination, JHEP 08 (2019) 001 [1905.01301].

[80] A. Chaudhuri and A. Dolgov, PBH Evaporation, Baryon Asymmetry, and Dark Matter, J. Exp. Theor. Phys. 133 (2021) 552 [2001.11219].

[81] I. Masina, Dark matter and dark radiation from evaporating primordial black holes, Eur. Phys. J. Plus 135 (2020) 552 [2004.04740].

[82] I. Baldes, Q. Decant, D.C. Hooper and L. Lopez-Honorez, Non-Cold Dark Matter from Primordial Black Hole Evaporation, JCAP 08 (2020) 045 [2004.14773].

[83] P. Gondolo, P. Sandick and B. Shams Es Haghi, Effects of primordial black holes on dark matter models, Phys. Rev. D 102 (2020) 095018 [2009.02424].

[84] N. Bernal and O. Zapata, ´ Self-interacting Dark Matter from Primordial Black Holes, JCAP 03 (2021) 007 [2010.09725].

[85] N. Bernal and O. Zapata, ´ Gravitational dark matter production: primordial black holes and UV freeze-in, Phys. Lett. B 815 (2021) 136129 [2011.02510].

[86] N. Bernal and O. Zapata, ´ Dark Matter in the Time of Primordial Black Holes, JCAP 03 (2021) 015 [2011.12306].

[87] N. Bernal, Gravitational Dark Matter and Primordial Black Holes, in Beyond Standard Model: From Theory to Experiment, 5, 2021 [2105.04372].

[88] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation, Phys. Rev. D 105 (2022) 015022 [2107.00013].

[89] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Primordial black hole evaporation and dark matter production. II. Interplay with the freeze-in or freeze-out mechanism, Phys. Rev. D 105 (2022) 015023 [2107.00016].

[90] N. Bernal, F. Hajkarim and Y. Xu, Axion Dark Matter in the Time of Primordial Black Holes, Phys. Rev. D 104 (2021) 075007 [2107.13575].

[91] N. Bernal, Y.F. P´erez-Gonz´alez, Y. Xu and O. Zapata, ´ ALP dark matter in a primordial black hole dominated universe, Phys. Rev. D 104 (2021) 123536 [2110.04312].

[92] N. Bernal, Y.F. P´erez-Gonz´alez and Y. Xu, Superradiant production of heavy dark matter from primordial black holes, Phys. Rev. D 106 (2022) 015020 [2205.11522].

[93] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Redshift effects in particle production from Kerr primordial black holes, Phys. Rev. D 106 (2022) 103012 [2207.09462].

[94] K. Mazde and L. Visinelli, The interplay between the dark matter axion and primordial black holes, JCAP 01 (2023) 021 [2209.14307].

[95] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Evaporation of primordial black holes in the early Universe: Mass and spin distributions, Phys. Rev. D 108 (2023) 015005 [2212.03878].

[96] S. Davidson, M. Losada and A. Riotto, A New perspective on baryogenesis, Phys. Rev. Lett. 84 (2000) 4284 [hep-ph/0001301].

[97] R. Allahverdi, B. Dutta and K. Sinha, Baryogenesis and Late-Decaying Moduli, Phys. Rev. D 82 (2010) 035004 [1005.2804].

[98] A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [1702.06124].

[99] R. Allahverdi, P.S.B. Dev and B. Dutta, A simple testable model of baryon number violation: Baryogenesis, dark matter, neutron–antineutron oscillation and collider signals, Phys. Lett. B 779 (2018) 262 [1712.02713].

[100] P. Konar, A. Mukherjee, A.K. Saha and S. Show, A dark clue to seesaw and leptogenesis in a pseudo-Dirac singlet doublet scenario with (non)standard cosmology, JHEP 03 (2021) 044 [2007.15608].

[101] N. Bernal and C.S. Fong, Hot Leptogenesis from Thermal Dark Matter, JCAP 10 (2017) 042 [1707.02988].

[102] S.-L. Chen, A. Dutta Banik and Z.-K. Liu, Leptogenesis in fast expanding Universe, JCAP 03 (2020) 009 [1912.07185].

[103] N. Bernal, C.S. Fong, Y.F. P´erez-Gonz´alez and J. Turner, Rescuing high-scale leptogenesis using primordial black holes, Phys. Rev. D 106 (2022) 035019 [2203.08823].

[104] M. Chakraborty and S. Roy, Baryon asymmetry and lower bound on right handed neutrino mass in fast expanding Universe: an analytical approach, JCAP 11 (2022) 053 [2208.04046].

[105] H. Assadullahi and D. Wands, Gravitational waves from an early matter era, Phys. Rev. D 79 (2009) 083511 [0901.0989].

[106] R. Durrer and J. Hasenkamp, Testing Superstring Theories with Gravitational Waves, Phys. Rev. D 84 (2011) 064027 [1105.5283].

[107] L. Alabidi, K. Kohri, M. Sasaki and Y. Sendouda, Observable induced gravitational waves from an early matter phase, JCAP 05 (2013) 033 [1303.4519].

[108] F. D’Eramo and K. Schmitz, Imprint of a scalar era on the primordial spectrum of gravitational waves, Phys. Rev. Research. 1 (2019) 013010 [1904.07870].

[109] N. Bernal and F. Hajkarim, Primordial Gravitational Waves in Nonstandard Cosmologies, Phys. Rev. D 100 (2019) 063502 [1905.10410].

[110] D.G. Figueroa and E.H. Tanin, Ability of LIGO and LISA to probe the equation of state of the early Universe, JCAP 08 (2019) 011 [1905.11960].

[111] N. Bernal, A. Ghoshal, F. Hajkarim and G. Lambiase, Primordial Gravitational Wave Signals in Modified Cosmologies, JCAP 11 (2020) 051 [2008.04959].

[112] D. Bhatia and S. Mukhopadhyay, Unitarity limits on thermal dark matter in (non-)standard cosmologies, JHEP 03 (2021) 133 [2010.09762].

[113] F. D’Eramo, N. Fern´andez and S. Profumo, When the Universe Expands Too Fast: Relentless Dark Matter, JCAP 05 (2017) 012 [1703.04793].

[114] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (6, 2005), 10.1017/CBO9781139644167.

[115] S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260].

[116] M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127].

[117] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291].

[118] F. De Bernardis, L. Pagano and A. Melchiorri, New constraints on the reheating temperature of the universe after WMAP-5, Astropart. Phys. 30 (2008) 192.

[119] P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [1511.00672].

[120] M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP 06 (2015) 025 [1503.03513].

[121] R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, Open J.Astrophys. 4 (2021) [2006.16182].

[122] B. Spokoiny, Deflationary universe scenario, Phys. Lett. B 315 (1993) 40 [gr-qc/9306008].

[123] P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58 (1998) 023503 [astro-ph/9711102].

[124] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239].

[125] J. Khoury, P.J. Steinhardt and N. Turok, Designing cyclic universe models, Phys. Rev. Lett. 92 (2004) 031302 [hep-th/0307132].

[126] M. Gasperini and G. Veneziano, The Pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130].

[127] J.K. Erickson, D.H. Wesley, P.J. Steinhardt and N. Turok, Kasner and mixmaster behavior in universes with equation of state w ≥ 1, Phys. Rev. D 69 (2004) 063514 [hep-th/0312009].

[128] J.D. Barrow and K. Yamamoto, Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic Universes, Phys. Rev. D 82 (2010) 063516 [1004.4767].

[129] A. Ijjas and P.J. Steinhardt, A new kind of cyclic universe, Phys. Lett. B 795 (2019) 666 [1904.08022].

[130] P. Arias, N. Bernal, A. Herrera and C. Maldonado, Reconstructing Non-standard Cosmologies with Dark Matter, JCAP 10 (2019) 047 [1906.04183].

[131] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.

[132] G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [1204.3622].

[133] J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249].

[134] K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2005) 30 [hep-ph/0511003].

[135] A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081]. [136] K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [0711.4646].

[137] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [0911.1120].

[138] F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [1410.6157].

[139] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [1706.07442].

L O A D I N G

. . . comments & more!

. . . comments & more!