Arguably the most secure and trusted smart contract network today, Ethereum continues to be a game-changing zero-to-one innovation. The ubiquitous Layer-1 blockchain caused a seismic shift in blockchain use cases — from simply hosting cryptocurrencies to broadening utility for builders and users of decentralized applications (dApps) — as it pioneered its world computer vision.
Yet, in spite of its success as Web3’s main growth driver, its infrastructure remains inherently plagued by scalability woes. In 2022,
Even as the infrastructure of the main Ethereum network continues to upgrade itself, Layer-2 (L2) scaling solutions that continue to iterate and innovate on its underlying technology have taken the community by storm. The sheer transaction load on Ethereum has shifted L2 improvements from a desirable feature, to a crucial imperative for dApp developers to operate sustainably in terms of performance and cost.
The rollup-centric vision set forth by Ethereum is the primary catalyst for L2 scaling innovations that we see today. Specifically, the two roll-up technologies available today — optimistic and ZK (zero-knowledge) proofs — are regarded for their respective abilities to drive greater efficiencies and scalability.
So, what’s a rollup?
L2 rollups rely on decentralized security derived from Ethereum but outsource transaction processing to separate third-party networks after ‘rolling up’ the data and then committing the information on-chain on the Ethereum mainnet.
This effectively mitigates network congestion and enhances throughput speed, while splitting transaction costs across a batch of transactions — allowing as much as
Importantly,
That said, the L2 landscape is still very much in its early stages. ZK rollup development is still in its infancy, while optimistic rollups are also burdened by expensive data publication fees, constrained throughput, and a lengthy challenge period before transaction finality is achieved.
This is where modular blockchains come in, to overcome such limitations to unlock new use cases with the hope of ultimately moving the industry forward.
Although users experience blockchains as a single computing entity, blockchain nodes perform three main tasks:
Blockchains like Solana and Ethereum 1.0 (pre-Merge) unify all three “layers” of operation within the same network. This means a node must divide its resources across all tasks at once — hence termed “monolithic blockchains”.
Modular blockchains take a fundamentally different approach. Instead of having all nodes responsible for performing several tasks concurrently, modular blockchains utilize a system whereby every function is performed by an independent network of nodes. By allowing each network to specialize in its task, resulting efficiency gains are able to pass on lower fees to users and better performance for dApps.
Data availability is an indispensable part of blockchain scaling. Alternative scaling solutions such as bridges, sidechains, and validiums do not gain data nor security from Ethereum itself and thus suffer from potential security compromises and trust implications as they form a disparate system without uniform data availability guarantees. The
On the other hand, rollups typically outsource data availability and consensus to a shared base layer. This allows them to operate based on 1-of-N trust models, where N can’t be restricted. Security is upheld, but this poses operational problems in the optimistic rollup framework.
To uphold fundamental security assumptions, data from the rollup must remain available to give verifiers the opportunity to submit fraud proofs. As data availability is integral to maintaining the security model of rollups, expensive gas fees, and storage costs are still incurred on the Ethereum mainnet. In fact, the vast majority of transaction fees incurred on an L2 today go towards paying for data on Ethereum. On average, data publication costs for existing rollups account for 73-79% of the total transaction fee. When Ethereum experiences high network activity, this can inflate to more than 90% of total fees.
Modular architecture that uses a separate specialized data availability solution addresses this issue. Rather than posting transaction data to the Ethereum network, where data bandwidth is limited and therefore expensive, the use of a specialized data availability solution such as EigenDA leverages expanded data bandwidth from another protocol (or layer) for lower costs and faster improvement cycles.
EigenDA is unique in that it is built on
With the Ethereum validator set as a security source, Ethereum stakers can opt-in to re-stake their staked ETH to not only secure the Ethereum mainnet, but also secure any network, application, or service that utilizes EigenDA. As EigenDA nodes are specialized to the data availability task and are independently upgradable, proof of publication and data availability can happen at cheaper costs without compromising security.
Another trade-off for optimistic rollups is the lengthy challenge period before transaction finality is achieved. Funds can move easily from the Ethereum mainnet to the rollup, but withdrawals require a long challenge period in order to satisfy trust assumptions. For example, the current standard, implemented on both Optimism and Arbitrum, is a 7-day challenge period.
Alternatively, ZK rollups allow for near-instant finality but require complex technology that is still being developed and tested before it is made available in the market. It is worth mentioning that current ZK rollups do not have full EVM support, and are more intensive to run computations for applications with little on-chain activity.
A more feasible path is to implement architecture and incentive mechanisms that will allow a rollup to lower the challenge period now.
As MPC signatures create cryptographic evidence to support network optimism, this offers an improvement over the current fraud-proof model by removing the tension of proof by contradiction. Effectively, this takes optimistic rollups from being default optimistic, to verifiably optimistic — creating a viable path for reducing the transaction challenge period to as low as 1-2 days.
While numerous layer-2 solutions have emerged off the back of Ethereum, few have managed to convincingly overcome some of the biggest challenges facing Web3 ecosystems. On the one hand, technical hurdles such as security, fees, and speed have restricted mass adoption, on the other, siloed ecosystems have prevented the cross-pollination of communities and ideas. A new approach is needed if we want to achieve a scalable L2 solution.
By separating execution, data availability, and transaction finality into separate layers,
Such improvements to technology and infrastructure allow dApp developers to concentrate on building the best applications while lowering Web3’s accessibility barriers for end-users. For example, game developers can incorporate more elements on-chain without worrying about high transaction fees or struggling with poor end-user experience such as lags, while advanced DeFi protocols with multiple trading products can be developed and operated at a low cost.
Incubated by
As more users and developers gravitate towards platforms like Mantle, the future of Web3 will focus more on modular L2 blockchains that can offer Ethereum’s trust while delivering efficient speeds.
This article was written by jacobc.eth for mantle.