paint-brush
None of us ever can forget the marble angelsby@robertsball

None of us ever can forget the marble angels

by Robert S. BallJune 7th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

Provost Baldwin held absolute sway in the University of Dublin for forty-one years. His memory is well preserved there. The Bursar still dispenses the satisfactory revenues which Baldwin left to the College. None of us ever can forget the marble angels round the figure of the dying Provost on which we used to gaze during the pangs of the Examination Hall. Baldwin died in 1785, and was succeeded by Francis Andrews, a Fellow of seventeen years' standing. As to the scholastic acquirements of Andrews, all I can find is a statement that he was complimented by the polite Professors of Padua on the elegance and purity with which he discoursed to them in Latin. Andrews was also reputed to be a skilful lawyer. He was certainly a Privy Councillor and a prominent member of the Irish House of Commons, and his social qualities were excellent. Perhaps it was Baldwin's example that stimulated a desire in Andrews to become a benefactor to his college. He accordingly bequeathed a sum of 3,000 pounds and an annual income of 250 pounds wherewith to build and endow an astronomical Observatory in the University. The figures just stated ought to be qualified by the words of cautious Ussher (afterwards the first Professor of Astronomy), that "this money was to arise from an accumulation of a part of his property, to commence upon a particular contingency happening to his family." The astronomical endowment was soon in jeopardy by litigation. Andrews thought he had provided for his relations by leaving to them certain leasehold interests connected with the Provost's estate. The law courts, however, held that these interests were not at the disposal of the testator, and handed them over to Hely Hutchinson, the next Provost. The disappointed relations then petitioned the Irish Parliament to redress this grievance by transferring to them the moneys designed by Andrews for the Observatory. It would not be right, they contended, that the kindly intentions of the late Provost towards his kindred should be frustrated for the sake of maintaining what they described as "a purely ornamental institution." The authorities of the College protested against this claim. Counsel were heard, and a Committee of the House made a report declaring the situation of the relations to be a hard one. Accordingly, a compromise was made, and the dispute terminated.
featured image - None of us ever can forget the marble angels
Robert S. Ball HackerNoon profile picture

Great Astronomers by Robert S. Ball, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. BRINKLEY

BRINKLEY.

Provost Baldwin held absolute sway in the University of Dublin for forty-one years. His memory is well preserved there. The Bursar still dispenses the satisfactory revenues which Baldwin left to the College. None of us ever can forget the marble angels round the figure of the dying Provost on which we used to gaze during the pangs of the Examination Hall.

Baldwin died in 1785, and was succeeded by Francis Andrews, a Fellow of seventeen years' standing. As to the scholastic acquirements of Andrews, all I can find is a statement that he was complimented by the polite Professors of Padua on the elegance and purity with which he discoursed to them in Latin. Andrews was also reputed to be a skilful lawyer. He was certainly a Privy Councillor and a prominent member of the Irish House of Commons, and his social qualities were excellent. Perhaps it was Baldwin's example that stimulated a desire in Andrews to become a benefactor to his college. He accordingly bequeathed a sum of 3,000 pounds and an annual income of 250 pounds wherewith to build and endow an astronomical Observatory in the University. The figures just stated ought to be qualified by the words of cautious Ussher (afterwards the first Professor of Astronomy), that "this money was to arise from an accumulation of a part of his property, to commence upon a particular contingency happening to his family." The astronomical endowment was soon in jeopardy by litigation. Andrews thought he had provided for his relations by leaving to them certain leasehold interests connected with the Provost's estate. The law courts, however, held that these interests were not at the disposal of the testator, and handed them over to Hely Hutchinson, the next Provost. The disappointed relations then petitioned the Irish Parliament to redress this grievance by transferring to them the moneys designed by Andrews for the Observatory. It would not be right, they contended, that the kindly intentions of the late Provost towards his kindred should be frustrated for the sake of maintaining what they described as "a purely ornamental institution." The authorities of the College protested against this claim. Counsel were heard, and a Committee of the House made a report declaring the situation of the relations to be a hard one. Accordingly, a compromise was made, and the dispute terminated.

The selection of a site for the new astronomical Observatory was made by the Board of Trinity College. The beautiful neighbourhood of Dublin offered a choice of excellent localities. On the north side of the Liffey an Observatory could have been admirably placed, either on the remarkable promontory of Howth or on the elevation of which Dunsink is the summit. On the south side of Dublin there are several eminences that would have been suitable: the breezy heaths at Foxrock combine all necessary conditions; the obelisk hill at Killiney would have given one of the most picturesque sites for an Observatory in the world; while near Delgany two or three other good situations could be mentioned. But the Board of those pre-railway days was naturally guided by the question of proximity. Dunsink was accordingly chosen as the most suitable site within the distance of a reasonable walk from Trinity College.

The northern boundary of the Phoenix Park approaches the little river Tolka, which winds through a succession of delightful bits of sylvan scenery, such as may be found in the wide demesne of Abbotstown and the classic shades of Glasnevin. From the banks of the Tolka, on the opposite side of the park, the pastures ascend in a gentle slope to culminate at Dunsink, where at a distance of half a mile from the stream, of four miles from Dublin, and at a height of 300 feet above the sea, now stands the Observatory. From the commanding position of Dunsink a magnificent view is obtained. To the east the sea is visible, while the southern prospect over the valley of the Liffey is bounded by a range of hills and mountains extending from Killiney to Bray Head, thence to the little Sugar Loaf, the Two Rock and the Three Rock Mountains, over the flank of which the summit of the Great Sugar Loaf is just perceptible. Directly in front opens the fine valley of Glenasmole, with Kippure Mountain, while the range can be followed to its western extremity at Lyons. The climate of Dunsink is well suited for astronomical observation. No doubt here, as elsewhere in Ireland, clouds are abundant, but mists or haze are comparatively unusual, and fogs are almost unknown.

The legal formalities to be observed in assuming occupation exacted a delay of many months; accordingly, it was not until the 10th December, 1782, that a contract could be made with Mr. Graham Moyers for the erection of a meridian-room and a dome for an equatorial, in conjunction with a becoming residence for the astronomer. Before the work was commenced at Dunsink, the Board thought it expedient to appoint the first Professor of Astronomy. They met for this purpose on the 22nd January, 1783, and chose the Rev. Henry Ussher, a Senior Fellow of Trinity College, Dublin. The wisdom of the appointment was immediately shown by the assiduity with which Ussher engaged in founding the observatory. In three years he had erected the buildings and equipped them with instruments, several of which were of his own invention. On the 19th of February, 1785, a special grant of 200 pounds was made by the Board to Dr. Ussher as some recompense for his labours. It happened that the observatory was not the only scientific institution which came into being in Ireland at this period; the newly-kindled ardour for the pursuit of knowledge led, at the same time, to the foundation of the Royal Irish Academy. By a fitting coincidence, the first memoir published in the "Transactions Of The Royal Irish Academy," was by the first Andrews, Professor of Astronomy. It was read on the 13th of June, 1785, and bore the title, "Account of the Observatory belonging to Trinity College," by the Rev. H. Ussher, D.D., M.R.I.A., F.R.S. This communication shows the extensive design that had been originally intended for Dunsink, only a part of which was, however, carried out. For instance, two long corridors, running north and south from the central edifice, which are figured in the paper, never developed into bricks and mortar. We are not told why the original scheme had to be contracted; but perhaps the reason may be not unconnected with a remark of Ussher's, that the College had already advanced from its own funds a sum considerably exceeding the original bequest. The picture of the building shows also the dome for the South equatorial, which was erected many years later.

Ussher died in 1790. During his brief career at the observatory, he observed eclipses, and is stated to have done other scientific work. The minutes of the Board declare that the infant institution had already obtained celebrity by his labours, and they urge the claims of his widow to a pension, on the ground that the disease from which he died had been contracted by his nightly vigils. The Board also promised a grant of fifty guineas as a help to bring out Dr. Ussher's sermons. They advanced twenty guineas to his widow towards the publication of his astronomical papers. They ordered his bust to be executed for the observatory, and offered "The Death of Ussher" as the subject of a prize essay; but, so far as I can find, neither the sermons nor the papers, neither the bust nor the prize essay, ever came into being.

There was keen competition for the chair of Astronomy which the death of Ussher vacated. The two candidates were Rev. John Brinkley, of Caius College, Cambridge, a Senior Wrangler (born at Woodbridge, Suffolk, in 1763), and Mr. Stack, Fellow of Trinity College, Dublin, and author of a book on Optics. A majority of the Board at first supported Stack, while Provost Hely Hutchinson and one or two others supported Brinkley. In those days the Provost had a veto at elections, so that ultimately Stack was withdrawn and Brinkley was elected. This took place on the 11th December, 1790. The national press of the day commented on the preference shown to the young Englishman, Brinkley, over his Irish rival. An animated controversy ensued. The Provost himself condescended to enter the lists and to vindicate his policy by a long letter in the "Public Register" or "Freeman's Journal," of 21st December, 1790. This letter was anonymous, but its authorship is obvious. It gives the correspondence with Maskelyne and other eminent astronomers, whose advice and guidance had been sought by the Provost. It also contends that "the transactions of the Board ought not to be canvassed in the newspapers." For this reference, as well as for much other information, I am indebted to my friend, the Rev. John Stubbs, D.D.

THE OBSERVATORY, DUNSINK. From a Photograph by W. Lawrence, Upper Sackville Street, Dublin.

The next event in the history of the Observatory was the issue of Letters Patent (32 Geo. III., A.D. 1792), in which it is recited that "We grant and ordain that there shall be forever hereafter a Professor of Astronomy, on the foundation of Dr. Andrews, to be called and known by the name of the Royal Astronomer of Ireland." The letters prescribe the various duties of the astronomer and the mode of his election. They lay down regulations as to the conduct of the astronomical work, and as to the choice of an assistant. They direct that the Provost and the Senior Fellows shall make a thorough inspection of the observatory once every year in June or July; and this duty was first undertaken on the 5th of July, 1792. It may be noted that the date on which the celebration of the tercentenary of the University was held happens to coincide with the centenary of the first visitation of the observatory. The visitors on the first occasion were A. Murray, Matthew Young, George Hall, and John Barrett. They record that they find the buildings, books and instruments in good condition; but the chief feature in this report, as well as in many which followed it, related to a circumstance to which we have not yet referred.

In the original equipment of the observatory, Ussher, with the natural ambition of a founder, desired to place in it a telescope of more magnificent proportions than could be found anywhere else. The Board gave a spirited support to this enterprise, and negotiations were entered into with the most eminent instrument-maker of those days. This was Jesse Ramsden (1735-1800), famous as the improver of the sextant, as the constructor of the great theodolite used by General Roy in the English Survey, and as the inventor of the dividing engine for graduating astronomical instruments. Ramsden had built for Sir George Schuckburgh the largest and most perfect equatorial ever attempted. He had constructed mural quadrants for Padua and Verona, which elicited the wonder of astronomers when Dr. Maskelyne declared he could detect no error in their graduation so large as two seconds and a half. But Ramsden maintained that even better results would be obtained by superseding the entire quadrant by the circle. He obtained the means of testing this prediction when he completed a superb circle for Palermo of five feet diameter. Finding his anticipations were realised, he desired to apply the same principles on a still grander scale. Ramsden was in this mood when he met with Dr. Ussher. The enthusiasm of the astronomer and the instrument-maker communicated itself to the Board, and a tremendous circle, to be ten feet in diameter, was forthwith projected.

Projected, but never carried out. After Ramsden had to some extent completed a 10-foot circle, he found such difficulties that he tried a 9-foot, and this again he discarded for an 8-foot, which was ultimately accomplished, though not entirely by himself. Notwithstanding the contraction from the vast proportions originally designed, the completed instrument must still be regarded as a colossal piece of astronomical workmanship. Even at this day I do not know that any other observatory can show a circle eight feet in diameter graduated all round.

I think it is Professor Piazzi Smith who tells us how grateful he was to find a large telescope he had ordered finished by the opticians on the very day they had promised it. The day was perfectly correct; it was only the year that was wrong. A somewhat remarkable experience in this direction is chronicled by the early reports of the visitors to Dunsink Observatory. I cannot find the date on which the great circle was ordered from Ramsden, but it is fixed with sufficient precision by an allusion in Ussher's paper to the Royal Irish Academy, which shows that by the 13th June, 1785, the order had been given, but that the abandonment of the 10-foot scale had not then been contemplated. It was reasonable that the board should allow Ramsden ample time for the completion of a work at once so elaborate and so novel. It could not have been finished in a year, nor would there have been much reason for complaint if the maker had found he required two or even three years more.

Seven years gone, and still no telescope, was the condition in which the Board found matters at their first visitation in 1792. They had, however, assurances from Ramsden that the instrument would be completed within the year; but, alas for such promises, another seven years rolled on, and in 1799 the place for the great circle was still vacant at Dunsink. Ramsden had fallen into bad health, and the Board considerately directed that "inquiries should be made." Next year there was still no progress, so the Board were roused to threaten Ramsden with a suit at law; but the menace was never executed, for the malady of the great optician grew worse, and he died that year.

Affairs had now assumed a critical aspect, for the college had advanced much money to Ramsden during these fifteen years, and the instrument was still unfinished. An appeal was made by the Provost to Dr. Maskelyne, the Astronomer Royal of England, for his advice and kindly offices in this emergency. Maskelyne responds—in terms calculated to allay the anxiety of the Bursar—"Mr. Ramsden has left property behind him, and the College can be in no danger of losing both their money and the instrument." The business of Ramsden was then undertaken by Berge, who proceeded to finish the circle quite as deliberately as his predecessor. After four years Berge promised the instrument in the following August, but it did not come. Two years later (1806) the professor complains that he can get no answer from Berge. In 1807, it is stated that Berge will send the telescope in a month. He did not; but in the next year (1808), about twenty-three years after the great circle was ordered, it was erected at Dunsink, where it is still to be seen.

The following circumstances have been authenticated by the signatures of Provosts, Proctors, Bursars, and other College dignitaries:—In 1793 the Board ordered two of the clocks at the observatory to be sent to Mr. Crosthwaite for repairs. Seven years later, in 1800, Mr. Crosthwaite was asked if the clocks were ready. This impatience was clearly unreasonable, for even in four more years, 1804, we find the two clocks were still in hand. Two years later, in 1806, the Board determined to take vigorous action by asking the Bursar to call upon Crosthwaite. This evidently produced some effect, for in the following year, 1807, the Professor had no doubt that the clocks would be speedily returned. After eight years more, in 1815, one of the clocks was still being repaired, and so it was in 1816, which is the last record we have of these interesting time-pieces. Astronomers are, however, accustomed to deal with such stupendous periods in their calculations, that even the time taken to repair a clock seems but small in comparison.

The long tenure of the chair of Astronomy by Brinkley is divided into two nearly equal periods by the year in which the great circle was erected. Brinkley was eighteen years waiting for his telescope, and he had eighteen years more in which to use it. During the first of these periods Brinkley devoted himself to mathematical research; during the latter he became a celebrated astronomer. Brinkley's mathematical labours procured for their author some reputation as a mathematician. They appear to be works of considerable mathematical elegance, but not indicating any great power of original thought. Perhaps it has been prejudicial to Brinkley's fame in this direction, that he was immediately followed in his chair by so mighty a genius as William Rowan Hamilton.

After the great circle had been at last erected, Brinkley was able to begin his astronomical work in earnest. Nor was there much time to lose. He was already forty-five years old, a year older than was Herschel when he commenced his immortal career at Slough. Stimulated by the consciousness of having the command of an instrument of unique perfection, Brinkley loftily attempted the very highest class of astronomical research. He resolved to measure anew with his own eye and with his own hand the constants of aberration and of nutation. He also strove to solve that great problem of the universe, the discovery of the distance of a fixed star.

These were noble problems, and they were nobly attacked. But to appraise with justice this work of Brinkley, done seventy years ago, we must not apply to it the same criterion as we would think right to apply to similar work were it done now. We do not any longer use Brinkley's constant of aberration, nor do we now think that Brinkley's determinations of the star distances were reliable. But, nevertheless, his investigations exercised a marked influence on the progress of science; they stimulated the study of the principles on which exact measurements were to be conducted.

Brinkley had another profession in addition to that of an astronomer. He was a divine. When a man endeavours to pursue two distinct occupations concurrently, it will be equally easy to explain why his career should be successful, or why it should be the reverse. If he succeeds, he will, of course, exemplify the wisdom of having two strings to his bow. Should he fail, it is, of course, because he has attempted to sit on two stools at once. In Brinkley's case, his two professions must be likened to the two strings rather than to the two stools. It is true that his practical experience of his clerical life was very slender. He had made no attempt to combine the routine of a parish with his labours in the observatory. Nor do we associate a special eminence in any department of religious work with his name. If, however, we are to measure Brinkley's merits as a divine by the ecclesiastical preferment which he received, his services to theology must have rivalled his services to astronomy. Having been raised step by step in the Church, he was at last appointed to the See of Cloyne, in 1826, as the successor of Bishop Berkeley.

Now, though it was permissible for the Archdeacon to be also the Andrews Professor, yet when the Archdeacon became a Bishop, it was understood that he should transfer his residence from the observatory to the palace. The chair of Astronomy accordingly became vacant. Brinkley's subsequent career seems to have been devoted entirely to ecclesiastical matters, and for the last ten years of his life he did not contribute a paper to any scientific society. Arago, after a characteristic lament that Brinkley should have forsaken the pursuit of science for the temporal and spiritual attractions of a bishopric, pays a tribute to the conscientiousness of the quondam astronomer, who would not even allow a telescope to be brought into the palace lest his mind should be distracted from his sacred duties.

The good bishop died on the 13th September, 1835. He was buried in the chapel of Trinity College, and a fine monument to his memory is a familiar object at the foot of the noble old staircase of the library. The best memorial of Brinkley is his admirable book on the "Elements of Plane Astronomy." It passed through many editions in his lifetime, and even at the present day the same work, revised first by Dr. Luby, and more recently by the Rev. Dr. Stubbs and Dr. Brunnow, has a large and well-merited circulation.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Robert S. Ball (2000). Great Astronomers. Urbana, Illinois: Project Gutenberg. Retrieved October 2022 https://www.gutenberg.org/cache/epub/2298/pg2298-images.html

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.