paint-brush
Unitarity Bound on Dark Matter in Low-temperature Reheating Scenarios: Acknowledgments and Referenceby@cosmological
174 reads

Unitarity Bound on Dark Matter in Low-temperature Reheating Scenarios: Acknowledgments and Reference

Too Long; Didn't Read

In this paper, researchers establish an upper bound on thermal dark matter mass using scattering unitarity, considering nonstandard cosmologies.
featured image - Unitarity Bound on Dark Matter in Low-temperature Reheating Scenarios: Acknowledgments and Reference
Cosmological thinking: time, space and universal causation  HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Nicolas Bernal, New York University Abu Dhabi;

(2) Partha Konar, Physical Research Laboratory;

(3) Sudipta Show, Physical Research Laboratory.

Acknowledgments

The authors acknowledge the hospitality during the IMHEP 23 at IOP, Bhubaneswar, where this project was initiated. Computational work was performed on the Param Vikram-1000 High-Performance Computing Cluster and TDP resources at the Physical Research Laboratory (PRL).

References

[1] G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (2018) 045002 [1605.04909].


[2] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].


[3] M. Drees, Dark Matter Theory, PoS ICHEP2018 (2019) 730 [1811.06406].


[4] V.A. Rubakov and D.S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory, World Scientific, Singapore (2017), 10.1142/10447.


[5] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365].


[6] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [1610.08297].


[7] M. Nori, R. Murgia, V. Irˇsiˇc, M. Baldi and M. Viel, Lyman-α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies, Mon. Not. Roy. Astron. Soc. 482 (2019) 3227 [1809.09619].


[8] S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407.


[9] B. Moore, An Upper limit to the mass of black holes in the halo of our galaxy, Astrophys. J. Lett. 413 (1993) L93 [astro-ph/9306004].


[10] B.J. Carr and M. Sakellariadou, Dynamical constraints on dark compact objects, Astrophys. J. 516 (1999) 195.


[11] V. Irˇsiˇc et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [1702.01764].


[12] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615.


[13] L. Hui, Unitarity bounds and the cuspy halo problem, Phys. Rev. Lett. 86 (2001) 3467 [astro-ph/0102349].


[14] I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [1703.00478].


[15] B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [1407.7874].


[16] J. Smirnov and J.F. Beacom, TeV-Scale Thermal WIMPs: Unitarity and its Consequences, Phys. Rev. D 100 (2019) 043029 [1904.11503].


[17] A. Ghosh, D. Ghosh and S. Mukhopadhyay, Asymmetric dark matter from semi-annihilation, JHEP 08 (2020) 149 [2004.07705].


[18] R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng, GeV-scale thermal WIMPs: Not even slightly ruled out, Phys. Rev. D 98 (2018) 023016 [1805.10305].


[19] K. Dutta, A. Ghosh, A. Kar and B. Mukhopadhyaya, MeV to multi-TeV thermal WIMPs: most conservative limits, JCAP 08 (2023) 071 [2212.09795].


[20] B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165.


[21] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [1703.07364].


[22] P. Konar, A. Mukherjee, A.K. Saha and S. Show, Linking pseudo-Dirac dark matter to radiative neutrino masses in a singlet-doublet scenario, Phys. Rev. D 102 (2020) 015024 [2001.11325].


[23] T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [0811.0172].


[24] T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [0907.1007].


[25] F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [1003.5912].


[26] G. B´elanger, K. Kannike, A. Pukhov and M. Raidal, Z3 Scalar Singlet Dark Matter, JCAP 01 (2013) 022 [1211.1014].


[27] G. B´elanger, K. Kannike, A. Pukhov and M. Raidal, Minimal semi-annihilating ZN scalar dark matter, JCAP 06 (2014) 021 [1403.4960].


[28] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191.


[29] E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43.


[30] D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [1602.04219].


[31] M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of Cannibal Dark Matter, JHEP 12 (2016) 039 [1607.03108].


[32] Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [1402.5143].


[33] S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z3 symmetry, JHEP 09 (2015) 063 [1505.00960].


[34] N. Bernal, C. Garc´ıa-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 04 (2015) 012 [1501.01973].


[35] N. Bernal, C. Garc´ıa-Cely and R. Rosenfeld, Z3 WIMP and SIMP Dark Matter from a Global U(1) Breaking, Nucl. Part. Phys. Proc. 267-269 (2015) 353.


[36] P. Ko and Y. Tang, Self-interacting scalar dark matter with local Z3 symmetry, JCAP 05 (2014) 047 [1402.6449].


[37] S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [1702.07860].


[38] X. Chu and C. Garc´ıa-Cely, Self-interacting Spin-2 Dark Matter, Phys. Rev. D 96 (2017) 103519 [1708.06764].


[39] N. Bernal, X. Chu, C. Garc´ıa-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [1510.08063].


[40] N. Yamanaka, S. Fujibayashi, S. Gongyo and H. Iida, Dark matter in the hidden gauge theory, 1411.2172.


[41] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [1411.3727].


[42] H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z’ -portal, Phys. Lett. B 748 (2015) 316 [1504.00745].


[43] M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [1507.01590].


[44] N. Bernal and X. Chu, Z2 SIMP Dark Matter, JCAP 01 (2016) 006 [1510.08527].


[45] M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, Observational Constraints on Decoupled Hidden Sectors, Phys. Rev. D 94 (2016) 063506 [1604.02401].


[46] N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95 (2017) 115023 [1702.04906].


[47] M. Heikinheimo, T. Tenkanen and K. Tuominen, WIMP miracle of the second kind, Phys. Rev. D 96 (2017) 023001 [1704.05359].


[48] N. Bernal, C. Cosme and T. Tenkanen, Phenomenology of Self-Interacting Dark Matter in a Matter-Dominated Universe, Eur. Phys. J. C 79 (2019) 99 [1803.08064].


[49] N. Bernal, A. Chatterjee and A. Paul, Non-thermal production of Dark Matter after Inflation, JCAP 12 (2018) 020 [1809.02338].


[50] E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [1512.04545].


[51] E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [1706.05381].


[52] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123].


[53] N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072].


[54] C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys. 21 (2004) 689 [hep-ph/0402033].


[55] G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230].


[56] M. Drees, H. Iminniyaz and M. Kakizaki, Abundance of cosmological relics in low-temperature scenarios, Phys. Rev. D 73 (2006) 123502 [hep-ph/0603165].


[57] C.E. Yaguna, An intermediate framework between WIMP, FIMP, and EWIP dark matter, JCAP 02 (2012) 006 [1111.6831].


[58] L. Roszkowski, S. Trojanowski and K. Turzy´nski, Neutralino and gravitino dark matter with low reheating temperature, JHEP 11 (2014) 146 [1406.0012].


[59] K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [1402.2846].


[60] M. Drees and F. Hajkarim, Dark Matter Production in an Early Matter Dominated Era, JCAP 02 (2018) 057 [1711.05007].


[61] N. Bernal, C. Cosme, T. Tenkanen and V. Vaskonen, Scalar singlet dark matter in non-standard cosmologies, Eur. Phys. J. C 79 (2019) 30 [1806.11122].


[62] C. Cosme, M. Dutra, T. Ma, Y. Wu and L. Yang, Neutrino portal to FIMP dark matter with an early matter era, JHEP 03 (2021) 026 [2003.01723].


[63] P. Ghosh, P. Konar, A.K. Saha and S. Show, Self-interacting freeze-in dark matter in a singlet doublet scenario, JCAP 10 (2022) 017 [2112.09057].


[64] P. Arias, N. Bernal, D. Karamitros, C. Maldonado, L. Roszkowski and M. Venegas, New opportunities for axion dark matter searches in nonstandard cosmological models, JCAP 11 (2021) 003 [2107.13588].


[65] N. Bernal and Y. Xu, WIMPs during reheating, JCAP 12 (2022) 017 [2209.07546].


[66] P.N. Bhattiprolu, G. Elor, R. McGehee and A. Pierce, Freezing-in hadrophilic dark matter at low reheating temperatures, JHEP 01 (2023) 128 [2210.15653].


[67] M.R. Haque, D. Maity and R. Mondal, WIMPs, FIMPs, and Inflaton phenomenology via reheating, CMB and ∆Nef f , JHEP 09 (2023) 012 [2301.01641].


[68] D.K. Ghosh, A. Ghoshal and S. Jeesun, Axion-like particle (ALP) portal freeze-in dark matter confronting ALP search experiments, 2305.09188.


[69] J. Silva-Malpartida, N. Bernal, J. Jones-P´erez and R.A. Lineros, From WIMPs to FIMPs with low reheating temperatures, JCAP 09 (2023) 015 [2306.14943].


[70] P. Arias, N. Bernal, J.K. Osi´nski, L. Roszkowski and M. Venegas, Revisiting signatures of thermal axions in nonstandard cosmologies, 2308.01352.


[71] P.K. Das, P. Konar, S. Kundu and S. Show, Jet substructure probe to unfold singlet-doublet dark matter in the presence of non-standard cosmology, JHEP 06 (2023) 198 [2301.02514].


[72] A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev. D 60 (1999) 063516 [astro-ph/9903484].


[73] M.Y. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav. 23 (2006) 1875 [astro-ph/0406621].


[74] D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP 06 (2009) 023 [0904.3331].


[75] T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter, and density perturbation from primordial black holes, Phys. Rev. D 89 (2014) 103501 [1401.1909].


[76] R. Allahverdi, J. Dent and J. Osi´nski, Nonthermal production of dark matter from primordial black holes, Phys. Rev. D 97 (2018) 055013 [1711.10511].


[77] O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black Hole Genesis of Dark Matter, JCAP 04 (2018) 009 [1712.07664].


[78] L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: Dark Matter of (almost) any Mass and Baryonic Matter from the Evaporation of Primordial Black Holes weighing a Ton (or less), JCAP 05 (2019) 005 [1812.10606].


[79] D. Hooper, G. Krnjaic and S.D. McDermott, Dark Radiation and Superheavy Dark Matter from Black Hole Domination, JHEP 08 (2019) 001 [1905.01301].


[80] A. Chaudhuri and A. Dolgov, PBH Evaporation, Baryon Asymmetry, and Dark Matter, J. Exp. Theor. Phys. 133 (2021) 552 [2001.11219].


[81] I. Masina, Dark matter and dark radiation from evaporating primordial black holes, Eur. Phys. J. Plus 135 (2020) 552 [2004.04740].


[82] I. Baldes, Q. Decant, D.C. Hooper and L. Lopez-Honorez, Non-Cold Dark Matter from Primordial Black Hole Evaporation, JCAP 08 (2020) 045 [2004.14773].


[83] P. Gondolo, P. Sandick and B. Shams Es Haghi, Effects of primordial black holes on dark matter models, Phys. Rev. D 102 (2020) 095018 [2009.02424].


[84] N. Bernal and O. Zapata, ´ Self-interacting Dark Matter from Primordial Black Holes, JCAP 03 (2021) 007 [2010.09725].


[85] N. Bernal and O. Zapata, ´ Gravitational dark matter production: primordial black holes and UV freeze-in, Phys. Lett. B 815 (2021) 136129 [2011.02510].


[86] N. Bernal and O. Zapata, ´ Dark Matter in the Time of Primordial Black Holes, JCAP 03 (2021) 015 [2011.12306].


[87] N. Bernal, Gravitational Dark Matter and Primordial Black Holes, in Beyond Standard Model: From Theory to Experiment, 5, 2021 [2105.04372].


[88] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation, Phys. Rev. D 105 (2022) 015022 [2107.00013].


[89] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Primordial black hole evaporation and dark matter production. II. Interplay with the freeze-in or freeze-out mechanism, Phys. Rev. D 105 (2022) 015023 [2107.00016].


[90] N. Bernal, F. Hajkarim and Y. Xu, Axion Dark Matter in the Time of Primordial Black Holes, Phys. Rev. D 104 (2021) 075007 [2107.13575].


[91] N. Bernal, Y.F. P´erez-Gonz´alez, Y. Xu and O. Zapata, ´ ALP dark matter in a primordial black hole dominated universe, Phys. Rev. D 104 (2021) 123536 [2110.04312].


[92] N. Bernal, Y.F. P´erez-Gonz´alez and Y. Xu, Superradiant production of heavy dark matter from primordial black holes, Phys. Rev. D 106 (2022) 015020 [2205.11522].


[93] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Redshift effects in particle production from Kerr primordial black holes, Phys. Rev. D 106 (2022) 103012 [2207.09462].


[94] K. Mazde and L. Visinelli, The interplay between the dark matter axion and primordial black holes, JCAP 01 (2023) 021 [2209.14307].


[95] A. Cheek, L. Heurtier, Y.F. P´erez-Gonz´alez and J. Turner, Evaporation of primordial black holes in the early Universe: Mass and spin distributions, Phys. Rev. D 108 (2023) 015005 [2212.03878].


[96] S. Davidson, M. Losada and A. Riotto, A New perspective on baryogenesis, Phys. Rev. Lett. 84 (2000) 4284 [hep-ph/0001301].

[97] R. Allahverdi, B. Dutta and K. Sinha, Baryogenesis and Late-Decaying Moduli, Phys. Rev. D 82 (2010) 035004 [1005.2804].

[98] A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [1702.06124].

[99] R. Allahverdi, P.S.B. Dev and B. Dutta, A simple testable model of baryon number violation: Baryogenesis, dark matter, neutron–antineutron oscillation and collider signals, Phys. Lett. B 779 (2018) 262 [1712.02713].

[100] P. Konar, A. Mukherjee, A.K. Saha and S. Show, A dark clue to seesaw and leptogenesis in a pseudo-Dirac singlet doublet scenario with (non)standard cosmology, JHEP 03 (2021) 044 [2007.15608].


[101] N. Bernal and C.S. Fong, Hot Leptogenesis from Thermal Dark Matter, JCAP 10 (2017) 042 [1707.02988].


[102] S.-L. Chen, A. Dutta Banik and Z.-K. Liu, Leptogenesis in fast expanding Universe, JCAP 03 (2020) 009 [1912.07185].


[103] N. Bernal, C.S. Fong, Y.F. P´erez-Gonz´alez and J. Turner, Rescuing high-scale leptogenesis using primordial black holes, Phys. Rev. D 106 (2022) 035019 [2203.08823].


[104] M. Chakraborty and S. Roy, Baryon asymmetry and lower bound on right handed neutrino mass in fast expanding Universe: an analytical approach, JCAP 11 (2022) 053 [2208.04046].


[105] H. Assadullahi and D. Wands, Gravitational waves from an early matter era, Phys. Rev. D 79 (2009) 083511 [0901.0989].


[106] R. Durrer and J. Hasenkamp, Testing Superstring Theories with Gravitational Waves, Phys. Rev. D 84 (2011) 064027 [1105.5283].


[107] L. Alabidi, K. Kohri, M. Sasaki and Y. Sendouda, Observable induced gravitational waves from an early matter phase, JCAP 05 (2013) 033 [1303.4519].


[108] F. D’Eramo and K. Schmitz, Imprint of a scalar era on the primordial spectrum of gravitational waves, Phys. Rev. Research. 1 (2019) 013010 [1904.07870].


[109] N. Bernal and F. Hajkarim, Primordial Gravitational Waves in Nonstandard Cosmologies, Phys. Rev. D 100 (2019) 063502 [1905.10410].


[110] D.G. Figueroa and E.H. Tanin, Ability of LIGO and LISA to probe the equation of state of the early Universe, JCAP 08 (2019) 011 [1905.11960].


[111] N. Bernal, A. Ghoshal, F. Hajkarim and G. Lambiase, Primordial Gravitational Wave Signals in Modified Cosmologies, JCAP 11 (2020) 051 [2008.04959].


[112] D. Bhatia and S. Mukhopadhyay, Unitarity limits on thermal dark matter in (non-)standard cosmologies, JHEP 03 (2021) 133 [2010.09762].


[113] F. D’Eramo, N. Fern´andez and S. Profumo, When the Universe Expands Too Fast: Relentless Dark Matter, JCAP 05 (2017) 012 [1703.04793].


[114] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (6, 2005), 10.1017/CBO9781139644167.


[115] S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260].


[116] M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127].


[117] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291].


[118] F. De Bernardis, L. Pagano and A. Melchiorri, New constraints on the reheating temperature of the universe after WMAP-5, Astropart. Phys. 30 (2008) 192.


[119] P.F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor and O. Pisanti, Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92 (2015) 123534 [1511.00672].


[120] M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP 06 (2015) 025 [1503.03513].


[121] R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, Open J.Astrophys. 4 (2021) [2006.16182].


[122] B. Spokoiny, Deflationary universe scenario, Phys. Lett. B 315 (1993) 40 [gr-qc/9306008].


[123] P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58 (1998) 023503 [astro-ph/9711102].


[124] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239].


[125] J. Khoury, P.J. Steinhardt and N. Turok, Designing cyclic universe models, Phys. Rev. Lett. 92 (2004) 031302 [hep-th/0307132].


[126] M. Gasperini and G. Veneziano, The Pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130].


[127] J.K. Erickson, D.H. Wesley, P.J. Steinhardt and N. Turok, Kasner and mixmaster behavior in universes with equation of state w ≥ 1, Phys. Rev. D 69 (2004) 063514 [hep-th/0312009].


[128] J.D. Barrow and K. Yamamoto, Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic Universes, Phys. Rev. D 82 (2010) 063516 [1004.4767].


[129] A. Ijjas and P.J. Steinhardt, A new kind of cyclic universe, Phys. Lett. B 795 (2019) 666 [1904.08022].


[130] P. Arias, N. Bernal, A. Herrera and C. Maldonado, Reconstructing Non-standard Cosmologies with Dark Matter, JCAP 10 (2019) 047 [1906.04183].


[131] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.


[132] G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [1204.3622].


[133] J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249].


[134] K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2005) 30 [hep-ph/0511003].


[135] A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081]. [136] K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [0711.4646].


[137] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [0911.1120].


[138] F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [1410.6157].


[139] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [1706.07442].