paint-brush
Mamba: A Generalized Sequence Model Backbone for AIby@rendering
183 reads

Mamba: A Generalized Sequence Model Backbone for AI

tldt arrow

Too Long; Didn't Read

Mamba enhances SSMs with a selection mechanism for context-aware reasoning, outperforming Transformers in long-context tasks like DNA and audio modeling. Future directions include scaling to LLaMa-sized AI models.

People Mentioned

Mention Thumbnail

Companies Mentioned

Mention Thumbnail
Mention Thumbnail
featured image - Mamba: A Generalized Sequence Model Backbone for AI
Rendering Technology Breakthroughs HackerNoon profile picture
0-item

Authors:

(1) Albert Gu, Machine Learning Department, Carnegie Mellon University with Equal contribution (agu@cs.cmu.edu);

(2) Tri Dao, Department of Computer Science, Princeton University with Equal contribution (tri@tridao.me).

Abstract and 1. Introduction

2 State Space Models

3 Selective State Space Models and 3.1 Motivation: Selection as a Means of Compression

3.2 Improving SSMs with Selection

3.3 Efficient Implementation of Selective SSMs

3.4 A Simplifed SSM Architecture

3.5 Properties of Selection Mechanisms

3.6 Additional Model Details

4 Empirical Evaluation and 4.1 Synthetic Tasks

4.2 Language Modeling

4.3 DNA Modeling

4.4 Audio Modeling and Generation

4.5 Speed and Memory Benchmarks

4.6 Model Ablations

5 Discussion

6 Conclusion, Acknowledgments and References

A Discussion: Selection Mechanism

B Related Work and B.1 S4 Variants and Derivatives

B.2 SSM Architectures

B.3 Relationship to RNNs

B.4 Linear Attention and B.5 Long Context Models

C Mechanics of Selective SSMs

D Hardware-aware Algorithm For Selective SSMs

E Experimental Details and Additional Results and E.1 Synthetic Tasks

E.2 Language Modeling

E.3 DNA Modeling

E.4 Audio Details

E.5 Efficiency Benchmark

5 Discussion

We discuss related work, limitations, and some future directions.


Related Work. Appendix A discusses how the selection mechanism relates to similar concepts. Appendix B has an extended related work of SSMs and other related models.


No Free Lunch: Continuous-Discrete Spectrum. Structured SSMs were originally defined as discretizations of continuous systems (1), and have had a strong inductive bias toward continuous-time data modalities such as perceptual signals (e.g. audio, video). As discussed in Sections 3.1 and 3.5, the selection mechanism overcomes their weaknesses on discrete modalities such as text and DNA; but this conversely can impede their performance on data that LTI SSMs excel on. Our ablations on audio waveforms examine this tradeoff in more detail.


Downstream Affordances. Transformer-based foundation models (particularly LLMs) have a rich ecosystem of properties and modes of interaction with pretrained models, such as fine-tuning, adaptation, prompting, in-context learning, instruction tuning, RLHF, quantization, and so on. We are particularly interested in whether Transformer alternatives such as SSMs have similar properties and affordances.


Scaling. Our empirical evaluation is limited to small model sizes, below the threshold of most strong open source LLMs (e.g. Llama (Touvron et al. 2023)) as well as other recurrent models such as RWKV (B. Peng et al. 2023) and RetNet (Y. Sun et al. 2023), which have been evaluated at the 7B parameter scale and beyond. It remains to assess whether Mamba still compares favorably at these larger sizes. We also note that scaling SSMs may involve further engineering challenges and adjustments to the model that are not discussed in this paper.


6 Conclusion

We introduce a selection mechanism to structured state space models, allowing them to perform context-dependent reasoning while scaling linearly in sequence length. When incorporated into a simple attention-free architecture, Mamba achieves state-of-the-art results on a diverse set of domains, where it matches or exceeds the performance of strong Transformer models. We are excited about the broad applications of selective state space models to build foundation models for different domains, especially in emerging modalities requiring long context such as genomics, audio, and video. Our results suggest that Mamba is a strong candidate to be a general sequence model backbone.

Acknowledgments

We thank Karan Goel, Arjun Desai, and Kush Bhatia for helpful feedback on the draft.

References
























This paper is available on arxiv under CC BY 4.0 DEED license.