This Data Sync Disaster Sparked an Open-Source Revolution

Written by Apache | Published 2025/02/27
Tech Story Tags: bigdata | seatunnel | open-source | apache-seatunnel | ultraman-zeta | data-sync-solutions | open-source-data-sync | data-sync-tools

TLDRHow a new engine, SeaTunnel’s "Ultraman Zeta", was developed to handle trillions of records more efficiently.via the TL;DR App

β€œHow challenging is it to design a system supporting trillion-level data synchronization? Let me tell you a story from-scratch …”

The Midnight SOS

One late night in 2021, just as I was about to shut down my computer, an urgent call came from operations:

β€œHelp! The entire data sync system has crashed. Over 3,000 table synchronizations are backlogged, and business systems are triggering alarms…”

The voice on the line belonged to a business line tech lead, thick with anxiety. This wasn’t our first emergency, but the scale was unprecedented:

Key Metrics

  • Daily Data Volume: 100+ TB
  • Concurrent Sync Jobs: 3,000+ tables (batch & streaming)
  • Latency SLA: Seconds
  • Current State: 3+ hours behind, worsening

β€œSystem resource usage?”
β€œA nightmare! Database connections maxed out, CPU at 80%, memory alerts…”

An emergency patch deployed overnight provided temporary relief. Post-mortem analysis and community discussions revealed this wasn’t an isolated incident but an industry-wide pain point.

Why Existing Solutions Failed

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1. Waste of resources │──► Tasks occupy too much memory and CPU, and occupy too many database connections1. Waste of resources │──► Tasks occupy too much memory and CPU, and occupy too many database connections
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 2. Poor performance & scalability │──► Performance cannot keep up, and adding new data sources requires changing a lot of code
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 3. Poor stability │──► Synchronization crashes occur several times a year, and often when others are celebrating a holiday, we are recovering
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 4. Poor batch and stream integration │──► Batch and stream integration is not supported, batch and stream need to be written separately
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 5. Poor monitoring │──► Real-time synchronization progress, synchronization rate, etc. cannot be seen
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Market Solutions Analysis

  • Solution A: High performance but heavyweight deployment
  • Solution B: Lightweight but unstable, single-node
  • Solution C: High maintenance costs, inflexible

These limitations sparked the creation of SeaTunnel’s new engine β€” affectionately called β€œUltraman Zeta” by the community for bringing light to data integration.

Architectural Evolution

Design Goals

We set audacious objectives:

  1. Performance: Trillion-record sync capability
  2. Usability: 5-minute setup, 30-minute deployment
  3. Extensibility: Connector development via minimal class implementations
  4. Stability: 24/7 operation
  5. Efficiency: 50%+ resource reduction vs alternatives

Core Architecture

After months of community collaboration:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            SeaTunnel API Layer            β”‚SeaTunnel API Layer            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚          Plugin Discovery Layer           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚           Multi-Engine Support            β”‚
β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚    β”‚ Flink  β”‚  β”‚  Spark  β”‚  β”‚  Zeta  β”‚   β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
└───────────────────────────────────────────

Technical Breakthroughs

1. Multi-Engine Support Evolution

Historical Context

2017-2019      β†’      2019-2021       β†’      2021-Present
Spark-only           +Flink Support           Zeta Engine

Translation Layer Innovation

SeaTunnel API Layer
                   β–²
         Translation LayerTranslation Layer
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Spark    β”‚ Flink    β”‚ Zeta     β”‚
    β”‚Translatorβ”‚Translatorβ”‚Translatorβ”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

2. Intelligent Connection Pooling

Before

Table1 ─► Connection1
Table2 ─► Connection2 (100 tables = 100 connections)100 tables = 100 connections)

After

Tables ─► Dynamic Pool (100 tables β‰ˆ 10 connections)Pool (100 tables β‰ˆ 10 connections)

3. Zero-Copy Data Transfer

Traditional

Source β†’ Memory β†’ Transform β†’ Memory β†’ SinkTransform β†’ Memory β†’ Sink

SeaTunnel

Source ═════► Transform ═════► SinkTransform ═════► Sink

4. Adaptive Backpressure

Fast Producer    Slow Consumer
     β”‚               β”‚
     β–Ό               β–Ό
  [||||||||]  β†’  [|||] (Automatic throttling)[||||||||]  β†’  [|||] (Automatic throttling)

5. Dynamic Thread Scheduling

Traditional Pool       SeaTunnel Pool
β”‚β”‚β”‚β”‚β”‚β”‚β”‚β”‚β”‚β”‚β”‚ (100)     β”‚β”‚β”‚β”‚β”‚ (10-50 adaptive)100)     β”‚β”‚β”‚β”‚β”‚ (10-50 adaptive)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜            β””β”€β”€β”€β”˜

6. Plugin Architecture

ClassLoader Isolation

Bootstrap CL β†’ System CL β†’ SeaTunnel CL β†’ Plugin CLSystem CL β†’ SeaTunnel CL β†’ Plugin CL

Loading Process

1. Scan Plugins β†’ 2. Create Loaders β†’ 3. Load Config β†’ 4. Init

War Stories

  • The Memory Leak Mystery: A persistent memory creep traced to special character handling β€” found after 72hrs of stack analysis.
  • Phantom Data Phenomenon: Intermittent data duplicates caused by batch boundary conditions β€” solved with transaction isolation improvements.
  • Performance Cliff: 40% throughput drops with specific data patterns β€” resolved through adaptive batching.

Epilogue

As Linus Torvalds said: β€œTalk is cheap. Show me the code.”

But today we say: β€œCode is cheap. Show me the value.”

SeaTunnel proves that elegant solutions emerge when solving real-world problems at scale. The true measure of technology lies not in its complexity, but in its ability to make developers’ lives easier.


Written by Apache | Next-generation high-performance, distributed, massive data integration tool.
Published by HackerNoon on 2025/02/27