How I Live Stream My Brain with Amazon IVS, a Muse Headband and React

Written by amazonivs | Published 2022/12/09
Tech Story Tags: amazon | live-streaming | amazonivs | aws | reactjs | good-company | brain-machine-interface | hackernoon-top-story | hackernoon-es | hackernoon-hi | hackernoon-zh | hackernoon-vi | hackernoon-fr | hackernoon-pt | hackernoon-ja

TLDRThis is the first time we've used React to broadcast live streaming our brain data. We use the Amazon IVS Web Broadcast SDK to broadcast our live brain data to the cloud. We're not going to look at every single step to utilize the SDK in this post. Instead, we'll look at the highlights to get a general idea of how it works. The first step is installing the am-ivcast module to run into our broadcast tool: In the broadcast-broadcast module, we need to import it into our favorite package: In-the broadcast tool, we've got another step to get another step into the project.via the TL;DR App

Earlier this year, I created a really fun project that I called "Brain
to the Cloud" where I saved my brain data to the cloud while playing
Call of Duty so that I could analyze the relationship between my
cognitive function and video game performance. I wrote up a three-part
blog post series and created some fun videos to summarize my findings on
that project. If you'd like to check those out, you can refer to the
links at the bottom of this post. A few months after I published that
project, I started working at Twitch as the lead Developer Advocate for
Amazon Interactive Video Service (Amazon IVS) - a fully managed solution
for creating live, interactive video streaming solutions (check out this series to learn more). The next step of my "Brain to the Cloud" project was obvious - I needed to live stream my brain.

Broadcasting My Brain

Before we look at the code, let's see the final product. There are 2
views for the application: a broadcasting view, and a playback view. In
the broadcasting view, we can preview the live video, start the
broadcast, and connect the Muse headband to stream the brain data
obtained from the headband. In the playback view, we display the live
stream with a
<video>
element, and chart the brain data in real-time

Project Overview

There are 5 steps to this project:
  1. Broadcast live stream
  2. Capture brain data
  3. Publish brain data as timed metadata within the live stream
  4. Playback live stream
  5. Listen for timed metadata and render brain data in a chart in real-time
If you prefer graphical depictions of such things, here's how this looks:

Building the Project

I used React for this project. Why? Well, I've got plenty of experience
with Vue and Angular, but I'm probably one of the last developers on
earth to try React. I figured it was about time to figure out what all
the hype was about, and I knew that this would not be a difficult
project to build with it. Due to my lack of prior experience, I'm not
what you'd call an "advanced" user of the framework, but I have to say
that I'm pretty happy with what I see so far. I found the process
enjoyable and did not find myself "fighting" with the framework. But
this blog post isn't about my opinion on JavaScript frameworks, so I'll
save that for a future post. Instead, let's talk about how I broadcast
my brain!

The Hardware

In my original "Brain to the Cloud" project, I used a "vintage" EEG
headset called a MindFlex to capture my brain readings. It worked fairly
well but required me to "hack" the device by adding an ESP-12
microcontroller in order to pull the readings off of the device and send
them to the cloud. This time I reached for something slightly newer -
and something that I could use with no modifications. After a bit of
research, I settled on the Muse S Headband. Thankfully, there is a really awesome open-source library called muse-js which lets me access the brain readings directly in a web browser with Web Bluetooth (in supported browsers, of course).

The Live Stream Broadcast

Until recently, live streaming with Amazon IVS required us to use a
third-party client to broadcast our streams as RTMPS. But we recently
launched a game-changer: the Amazon IVS Web Broadcast SDK.
As the name implies, this SDK gives us the ability to broadcast our
live stream via WebRTC directly from a web browser. Clearly, this was a
perfect fit for live streaming my brain since it means that I can create
an "all-in-one" solution for broadcasting my brain data along with my
live stream without relying on third-party software or external scripts.
Adding Web Broadcast to the React App
We're not going to look at every single step required to utilize the
Web Broadcast SDK in this post. Instead, we'll look at the highlights to
get a general idea of how it works. Don't worry - I've got another post
coming soon where we'll dig into the "step-by-step" process for using
the Web Broadcast SDK, so stay tuned for that. That said, let's take a
quick journey to see how I used the SDK in this project. My first step
was to use a web broadcast to install the
amazon-ivs-web-broadcast 
module. Using your favorite package management tool, run:
$ npm install amazon-ivs-web-broadcast
Next, we need to import it into our component. In my Broadcast.jsx component, I added:
import IVSBroadcastClient, { STANDARD_LANDSCAPE } from 'amazon-ivs-web-broadcast';
We can create an instance of the IVSBroadcastClient with the desired stream configuration and ingest the endpoint from our Amazon IVS channel and set it into our component's state.
this.setState({
  broadcastClient: IVSBroadcastClient.create({
    streamConfig: STANDARD_LANDSCAPE,
    ingestEndpoint: this.state.ingestEndpoint,
  })
});
Now that we've got an instance of the client, we can add our camera to the client. For this we use
navigator.mediaDevices.getUserMedia()
.
const streamConfig = STANDARD_LANDSCAPE;
const videoStream = await navigator.mediaDevices.getUserMedia({
    video: {
        deviceId: { exact: this.state.selectedVideoDeviceId },
        width: {
            ideal: streamConfig.maxResolution.width,
            max: streamConfig.maxResolution.width,
        },
        height: {
            ideal: streamConfig.maxResolution.height,
            max: streamConfig.maxResolution.height,
        },
    },
});
this.state.broadcastClient.addVideoInputDevice(videoStream, 'camera1', { index: 0 });
Adding the user's microphone to the client follows a similar pattern.
const audioStream = await navigator.mediaDevices.getUserMedia({
    audio: {
        deviceId: this.state.selectedAudioDeviceId
    },
});
this.state.broadcastClient.addAudioInputDevice(audioStream, 'mic1');
Note: Because of the browser security model, we need to get permissions to access the user's camera and microphone. Refer to the project source on GitHub for more information on this, and to see how I captured a list of
devices and presented them in a dialog to allow the user to choose the
broadcast device if multiple options are available.
Now we can add a live preview to the page so that we can see what our viewers will ultimately see on the player side of things.
<canvas ref={this.previewRef} id='broadcast-preview'></canvas>
And attach the preview to the
broadcastClient
:
this.state.broadcastClient.attachPreview(this.previewRef.current);
To start the broadcast, add a button to the page, and in the
onClick
handler for the button call
startBroadcast()
on the
broadcastClient
(passing the necessary
streamKey
).
this.state.broadcastClient.startBroadcast(this.state.streamKey);

Obtaining My Brain Data

As I mentioned above, I used the
muse-js
library, which provides the ability to connect to the headband and pull the raw data. However,
muse-js
does not calculate the absolute band powers for the EEG data. For this, I needed to reach for another library:
eeg-pipes
.
The first step is to add and import the libraries.
$ npm install muse-js
$ npm install @neurosity/pipes
import { zipSamples, MuseClient } from 'muse-js';
import { powerByBand, epoch, fft } from '@neurosity/pipes';
Next, I added a button with a click handler. In the handler, I
connect to the headset, start listening for data, and subscribe to the
stream.
const client = new MuseClient();
await client.connect();
await client.start();

zipSamples(client.eegReadings)
  .pipe(
    epoch({ duration: 1024, interval: 250, samplingRate: 256 }),
    fft({ bins: 256 }),
    powerByBand(),
  )
  .subscribe(
    (data) => {
      const ch0 = [data.delta[0], data.theta[0], data.alpha[0], data.beta[0], data.gamma[0]];
      const ch1 = [data.delta[1], data.theta[1], data.alpha[1], data.beta[1], data.gamma[1]];
      const ch2 = [data.delta[2], data.theta[2], data.alpha[2], data.beta[2], data.gamma[2]];
      const ch3 = [data.delta[3], data.theta[3], data.alpha[3], data.beta[3], data.gamma[3]];
      const meta = [ch0, ch1, ch2, ch3];
      //publish metadata
  }
);

Publishing my Brain Data as Timed Metadata

Now that I've got a handler that collects my brain data from the Muse
headband, it's time to publish that data as timed metadata in the live
stream.
The awesome thing about
timed metadata
is that it is directly embedded in the video stream, and remains a permanent part of that stream. That means that it exists even in recorded versions, meaning that even in on-demand playback we can listen for and respond to the events.
The Web Broadcast SDK does not support publishing timed metadata from the client side, so we'll have to use
putMetadata
(docs) via the AWS SDK for JavaScript. For this, I created an AWS Lambda function.
const AWS = require('aws-sdk');
const ivs = new AWS.IVS({
  apiVersion: '2020-07-14',
  region: 'us-east-1'
});

exports.send = async (event, context, callback) => {
  // response object
  const response = {
      'statusCode': 200,
      'headers': {
          'Access-Control-Allow-Origin': '*',
          'Access-Control-Allow-Methods': 'OPTIONS,GET,PUT,POST,DELETE',
          'Content-Type': 'application/json'
      },
      'body': '',
      'isBase64Encoded': false
  };

  // parse payload
  let payload;
  try {
    payload = JSON.parse(event.body);
  } 
  catch (err) {
    response.statusCode = 500;
    response.body = JSON.stringify(err);
    callback(null, response);
    return;
  }

  // validate payload
  if (!payload || !payload.channelArn || !payload.metadata) {
    response.statusCode = 400;
    response.body = 'Must provide, channelArn and metadata';
    callback(null, response);
    return;
  }

  // check payload size
  let byteLength = Buffer.byteLength(payload.metadata, 'utf8');
  if (byteLength > 1024) {
    response.statusCode = 400;
    response.body = 'Too big. Must be less than or equal to 1K';
    callback(null, response);
    return;
  }

  // putmetadata input
  let params = {
    channelArn: payload.channelArn,
    metadata: payload.metadata
  };

  try {
    await ivs.putMetadata(params).promise();
    response.statusCode = 200;
    response.body = JSON.stringify({'published': true}, '', 2);
    callback(null, response);
  } 
  catch(err) {
    response.statusCode = 500;
    response.body = err.stack;
    callback(null, response);
    return;
  }

};
To publish my brain data as timed metadata, I created an Amazon API Gateway to invoke the function and modify the
subscribe()
method above to call the AWS Lambda function.
zipSamples(client.eegReadings)
  .pipe(
    epoch({ duration: 1024, interval: 250, samplingRate: 256 }),
    fft({ bins: 256 }),
    powerByBand(),
  )
  .subscribe(
    (data) => {
      const ch0 = [data.delta[0], data.theta[0], data.alpha[0], data.beta[0], data.gamma[0]];
      const ch1 = [data.delta[1], data.theta[1], data.alpha[1], data.beta[1], data.gamma[1]];
      const ch2 = [data.delta[2], data.theta[2], data.alpha[2], data.beta[2], data.gamma[2]];
      const ch3 = [data.delta[3], data.theta[3], data.alpha[3], data.beta[3], data.gamma[3]];
      const meta = [ch0, ch1, ch2, ch3];

      // put metadata if broadcasting
      if(this.state.isBroadcasting) {
        fetch(LAMBDA_URL, {
          'method': 'POST',
          'mode': 'no-cors',
          'headers': {
            'Content-Type': 'application/json',
          },
          'body': JSON.stringify({
            channelArn: this.state.channelArn,
            metadata: JSON.stringify(meta)
          })
        });
      }
    }
  );

Building the Live Stream Playback and Charting My Brain Data

Once the live stream with brain data broadcast view was complete, it was
time to create a playback experience that would display the live stream
and chart the brain data in real time as it came in via timed metadata.
Creating The Live Stream Player
We can use the IVS Web Player SDK via NPM, but since it uses WebAssembly things can get tricky. To avoid that trickiness, I find it easier to use the web player via a
<script>
tag and I added that to my
index.html
in my React app.
<script src="https://player.live-video.net/1.12.0/amazon-ivs-player.min.js"></script>
In my
Playback.jsx
component, I grab a reference to the player and some necessary elements.
const { IVSPlayer } = window;
const { create: createMediaPlayer, isPlayerSupported, PlayerEventType, PlayerState } = IVSPlayer;
const { ENDED, PLAYING, READY, BUFFERING } = PlayerState;
const { TEXT_METADATA_CUE, ERROR } = PlayerEventType;
For playback, we use the native
<video>
tag.
<video ref={this.videoRef} controls playsInline></video>
And to initialize the player and start playback:
this.playerRef.current = createMediaPlayer();
this.playerRef.current.attachHTMLVideoElement(this.videoRef.current);
this.playerRef.current.load(STREAM_URL);
this.playerRef.current.play();

Listening and Responding to Timed Metadata

Now that we're playing the live stream, we can listen for and respond to the incoming brain data.
this.playerRef.current.addEventListener(TEXT_METADATA_CUE, this.onPlayerMetadata);
Set the brain data into our component state:
onPlayerMetadata = (e) => {
  //console.log(e);
  const data = JSON.parse(e.text);
  this.setState(state => {
    state.ch0.datasets[0].data = data[0];
    state.ch1.datasets[0].data = data[1];
    state.ch2.datasets[0].data = data[2];
    state.ch3.datasets[0].data = data[3];

    this.chartReferenceCh0.current.data.datasets[0].data = state.ch0.datasets[0].data;
    this.chartReferenceCh1.current.data.datasets[0].data = state.ch1.datasets[0].data;
    this.chartReferenceCh2.current.data.datasets[0].data = state.ch2.datasets[0].data;
    this.chartReferenceCh3.current.data.datasets[0].data = state.ch3.datasets[0].data;

    return ({
      ch0: state.ch0,
      ch1: state.ch1,
      ch2: state.ch2,
      ch3: state.ch3
    });
  });
};
And render it with a bar chart (with Chart.js):
<Bar
  data={this.state.ch0} 
  ref={this.chartReferenceCh0} 
  options={
    { 
      aspectRatio: 1, 
      title: { 
        display: true, 
        text: 'Channel: ' + channelNames[0] }, 
        responsive: true, 
        tooltips: { 
          enabled: false 
        }, 
        legend: { 
          display: false 
        } 
    }
  } />
The visualization is cool, and certainly provides a fun way to see my
brain data while I'm live streaming a game, but doesn't provide a ton of
context. So I figured it would make sense to include some calculations
to give insight into what the data actually means. For that, I found
some calculations in the
muse-lsl
project on GitHub
which included some formulas that can be used to calculate factors like
relaxation (alpha divided by delta), and concentration (beta divided by
theta). Another great blog post I found highlighted a way to derive fatigue ((theta + alpha) / beta). I wrapped these calculations up in a handy, reusable component.
<Row className='mb-2'>
  {/* 
      Delta: 0
      Theta: 1
      Alpha: 2
      Beta: 3
      Gamma: 4
  */}
  <Col xs={12} xxl={4} className='align-items-center mb-2 mb-xxl-0'>
    <Badge className='fs-6 w-100' bg='info'>
      Relaxation: 
      <span className='fw-bold'>
        <NumberFormat 
          value={this.props.dataset.data[0] ? (this.props.dataset.data[2] / this.props.dataset.data[0]) : 0} 
          decimalScale={2} 
          displayType={'text'} />
      </span>
    </Badge> 
  </Col>
  <Col xs={12} xxl={4} className='align-items-center mb-2 mb-xxl-0'>
    <Badge className='fs-6 w-100' bg='info'>
      Fatigue: 
      <span className='fw-bold'>
        <NumberFormat 
          value={ this.props.dataset.data[3] ? ( (this.props.dataset.data[1] + this.props.dataset.data[2]) / this.props.dataset.data[3] ) : 0 } 
          decimalScale={2} 
          displayType={'text'} />
      </span>
    </Badge> 
  </Col>
  <Col xs={12} xxl={4} className='align-items-center mb-2 mb-xxl-0'>
    <Badge className='fs-6 w-100' bg='info'>
      Focus: 
      <span className='fw-bold'>
        <NumberFormat 
          value={this.props.dataset.data[1] ? (this.props.dataset.data[3] / this.props.dataset.data[1]) : 0} 
          decimalScale={2} 
          displayType={'text'} />
      </span>
    </Badge>
  </Col>
</Row>

Summary

In this post, we looked at how I created a React application to live
stream my brain data with Amazon IVS. If you'd like to learn more about
Amazon IVS, please check out the series Getting Started with Amazon Interactive Video Service here on dev.to. If you're interested in trying out the application or just checking out the full source for the application, check it out on GitHub. Your comments, questions and feedback is always welcome, so leave a comment here or connect with me on Twitter

Links


Written by amazonivs | Easy low-latency live video streaming at scale.
Published by HackerNoon on 2022/12/09