Kule nqaku, ndingathanda ukucwangcisa umgangatho weemodeli ye-diffusion ukuze ufumane umgangatho wokugqibela, umgangatho wokugqibela, kunye ne-code yokufunda umgangatho we-diffusion eyenziwa kwi-PyTorch ekupheleni. Definition: Ukucaciswa: iimveliso iimodeli generative kwi-Machine Learning, esetyenziswa ukuvelisa idatha ephezulu [ngathi iifoto] ekuqaleni kwe-noise epheleleyo. Izixhobo zithunyelwe ngeengxaki ze-diffusion ezilandelayo kwi-Markov chain [ njengoko i-sequence yeengxaki ze-stochastic apho isinyathelo esininzi kuxhomekeke kwi-step yexesha elandelayo] yaye isakhiwa ngokucacileyo kwinkqubo yokuthintela. Diffusion model Nceda siphinde ezininzi ukufumana i-idea yesiseko esekelwe kwimodeli ye-diffusion. Kule nqaku ebizwa ngokuthi Umbhali wabelana ukuba: “ ”[1] Ukulungiselela ngokufanelekileyo nge-Non-Equilibrium Thermodynamics Ukulungiselela ngokufanelekileyo nge-Non-Equilibrium Thermodynamics Umzekelo esisiseko, ebizwa nge-physics ye-statistical non-equilibrium, kuyinto ukunciphisa ngokushesha kwaye ngokushesha isakhiwo kwi-data distribution nge- iterative forward diffusion process. Ngoko ke sinokufunda inqubo ye-diffusion engqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongqongq The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. I-process ye-diffusion yahlukaniswa kwi-phase elandelayo kunye ne-reverse. Makhe umzekelo yokwenza iifoto emangalisayo ye-high-quality usebenzisa iimodeli ze-diffusion. I-phase ezimbini iya kuba ngathi: We start with a real, high-quality image and add noise to it in steps to arrive at pure noise. Basically, we want to destroy the structure in the non-random data distribution that exists at the start. Forward Diffusion Phase: Here, q is our forward process,  the output of the forward process at time step t, is an input at time step t. N is a normal distribution with mean and variance. x_t x_(t-1) sqrt(1 - β_t) x_{t-1} β_tI [also called the schedule] here controls the amount of noise added at time step = t whose value ranges from 0→1. Depending on the type of schedule you use, you arrive at what is close to pure noise sooner or later. i.e. β_1,…,β_T is a variance schedule (that is either learned or fixed) which, if well-behaved, ensures that is almost an isotropic Gaussian at sufficiently large T. β_t x_T This is where the actual machine learning takes place. As the name suggests, we try to transform the noise back into a sample from the target distribution in this phase. i.e. the model is learning to denoise pure Gaussian noise into a clean image. Once the neural network has been trained, this ability can be used to generate new images out of Gaussian noise through step-by-step reverse diffusion. Reverse Diffusion Phase: Since one cannot readily estimate , we need to learn a model to approximate the conditional probabilities for the reverse diffusion process. q(x_(t-1)|x_t) p_theta We want to model the probability density of an earlier time step given the current. If we apply this reverse formula for all time steps T→0, we can trace our steps back to the original data distribution. The time step information is provided usually as positional embeddings to the model. It is worth mentioning here that the diffusion model at a given timestep to make it equivalent to the image at the start, and not just the delta between the current and previous time step. However, we only subtract part of it and move to the next step. That is how the diffusion process works. predicts the entire noise to be removed Ukuqhathanisa, ngokubanzi, i-model ye-diffusion ngokusebenzisa ukuongezwa kwe-Gaussian nozzle, kwaye ke Ngemuva kokufunda, ungenza iimodeli ye-diffusion ukuvelisa idatha ngokucacileyo Ukubuyekezwa kweemathemikhali ngokugqithisileyo, nqakraza kule blog [4]. destroys the structure in training data learns to recover passing randomly sampled noise through the “learned” denoising process Implementation: Ukusebenza: Ukusetyenziswa kwe , leyo ibandakanya iifoto zeempawu kwi-102 iindidi, kwaye ukwakha imodeli elula kakhulu ngenxa yinkcukacha le nqaku ukufumana i-idea core kunye nokuveliswa kwimodeli ye-diffusion. Oxford Flowers102 Dataset Njengoko i-sum ye-Gaussians yinto ye-Gaussian, nangona i-addition ye-noise yi-sequential, inokufumana i-version ye-noisy ye-imeyile yokufaka ngexesha elifanelekileyo [2]. Le nto ilandelayo i-Equation 4 ukusuka kwi- [2] Forward phase: def linear_beta_schedule(timesteps, start=1e-4, end=2e-2): """Creates a linearly increasing noise schedule.""" return torch.linspace(start, end, timesteps) def get_idx_from_list(vals, t, x_shape): """ Returns a specific index t of a passed list of values vals. """ batch_size = t.shape[0] out = vals.gather(-1, t.cpu()) return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device) def forward_diffusion_sample(x_0, t, device="cpu"): """ Takes an image and a timestep as input and returns the noisy version of it.""" noise = torch.randn_like(x_0) sqrt_alphas_cumprod_t = get_index_from_list(sqrt_alphas_cumprod, t, x_0.shape) sqrt_one_minus_alphas_cumprod_t = get_idx_from_list(sqrt_one_minus_alphas_cumprod, t, x_0.shape) return sqrt_alphas_cumprod_t.to(device) * x_0.to(device) + sqrt_one_minus_alphas_cumprod_t.to(device) * noise.to(device), noise.to(device) T = 300 # Total number of timesteps betas = linear_beta_schedule(T) # Precompute values for efficiency alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0) sqrt_recip_alphas = torch.sqrt(1. / alphas) sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) Yinto phase denoising apho imodeli ufundisa ukucacisa i-noise eyenziwe ngexesha elinye. Thina usebenzisa inethiwekhi ye-U-Net elula le-neural eyenza i-image ye-noisy kunye ne-time step [eyenziwa njenge-positional embedding] kwaye ibonise i-noise. I-layer elandelayo isetyenziselwa i-incubation ye-sinusoidal time step, i-capture ye-context ye-temporum ukuze ilungele i-output ye-convolutional. Le nkqubo yenzelwe kwi- [2] kunye ne-variants ezihambelana kwi- [3]. Reverse Diffusion Phase: ConvBlock class SinusoidalPositionEmbeddings(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, t): half_dim = self.dim // 2 scale = math.log(10000) / (half_dim - 1) freqs = torch.exp(torch.arange(half_dim, device=t.device) * -scale) angles = t[:, None] * freqs[None, :] return torch.cat([angles.sin(), angles.cos()], dim=-1) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, time_emb_dim, upsample=False): super().__init__() self.time_mlp = nn.Linear(time_emb_dim, out_channels) self.upsample = upsample self.conv1 = nn.Conv2d(in_channels * 2 if upsample else in_channels, out_channels, kernel_size=3, padding=1) self.transform = ( nn.ConvTranspose2d(out_channels, out_channels, kernel_size=4, stride=2, padding=1) if upsample else nn.Conv2d(out_channels, out_channels, kernel_size=4, stride=2, padding=1) ) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x, t): h = self.bn1(self.relu(self.conv1(x))) time_emb = self.relu(self.time_mlp(t))[(..., ) + (None,) * 2] h = h + time_emb h = self.bn2(self.relu(self.conv2(h))) return self.transform(h) class SimpleUNet(nn.Module): """Simplified U-Net for denoising diffusion models.""" def __init__(self): super().__init__() image_channels = 3 down_channels = (64, 128, 256, 512, 1024) up_channels = (1024, 512, 256, 128, 64) output_channels = 3 time_emb_dim = 32 self.time_mlp = nn.Sequential( SinusoidalPositionEmbeddings(time_emb_dim), nn.Linear(time_emb_dim, time_emb_dim), nn.ReLU() ) self.init_conv = nn.Conv2d(image_channels, down_channels[0], kernel_size=3, padding=1) self.down_blocks = nn.ModuleList([ ConvBlock(down_channels[i], down_channels[i+1], time_emb_dim) for i in range(len(down_channels) - 1) ]) self.up_blocks = nn.ModuleList([ ConvBlock(up_channels[i], up_channels[i+1], time_emb_dim, upsample=True) for i in range(len(up_channels) - 1) ]) self.final_conv = nn.Conv2d(up_channels[-1], output_channels, kernel_size=1) def forward(self, x, t): t_emb = self.time_mlp(t) x = self.init_conv(x) skip_connections = [] for block in self.down_blocks: x = block(x, t_emb) skip_connections.append(x) for block in self.up_blocks: skip_x = skip_connections.pop() x = torch.cat([x, skip_x], dim=1) x = block(x, t_emb) return self.final_conv(x) model = SimpleUnet() Indawo yokufunda i-MSE isisombululo efanelekileyo, i-calculating the difference between the actual noise and the model's prediction of that noise. def get_loss(model, x_0, t, device): x_noisy, noise = forward_diffusion_sample(x_0, t, device) noise_pred = model(x_noisy, t) return F.mse_loss(noise, noise_pred) Okugqibela, emva kokufunda iimodeli ye-300 epochs, sinokufumana ukuvelisa iifoto ezininzi ezininzi ezininzi zeempawu ngokufaka i-pure Gaussian noomgca kunye nokufunda ngokusebenzisa inqubo ye-diffusion ye-reverse ezaziwayo. Ngezantsi iifomati eziliqela iye yenza ngokufanelekileyo. Kubalulekile ukuvelisa ezinye iintlobo ze-architecture, i-learning rate, i-scheduler, kunye ne-epochs ezidlulileyo yokufunda. References: Ukufundwa okuhlobene ngokufanelekileyo usebenzisa i-Nonequilibrium Thermodynamics Sohl-Dickstein, J. et al.[2015] I-Denosing Diffusion Probabilistic Models Ho et al. [2020] Iimodeli ze-diffusion zibonisa i-GANs kwi-Image Synthesis Dhariwal kunye neNichol [2021] Le nqaku elidlulileyo yokufunda ngakumbi kwi-mathematics eyenza iimodeli ze-diffusion. Le repository ukufumana iinkcukacha kunye neengxelo malunga ne-Diffusion Models. I-Blog Yentlungu I-Repository