Problem Uninzi we-algorithms zenzululwazi ziyafumaneka - Ukusetyenziswa kweimifanekiso kunye ne-analytics, izinto eziphambili ze-machine learning, njl. Abacwaningi bafumane i-MATLAB, baqalise iinkcukacha, kunye ne-share files. Ukucinga .m Kodwa ikhowudi yokukhiqiza esekelwe kwezi algorithms isebenza kwindawo ezininzi. Ukuba ukwakha i-app yewebhu ebonakalayo izinga le-image, uya kubhala i-JavaScript. Ngoko ke uya kufumana iphepha, ucebisa i-algorithm, kwaye uqhagamshelane. Nazi ingxaki: njani uyazi ukuba ukuvelisa kwakho kufanelekileyo? You can write unit tests. Check that identical images return 1.0, and that different images return a lower value. But that only catches obvious bugs. The subtle ones are wrong boundary handling, slightly off coefficients, or missing normalization steps. Your code runs and returns plausible numbers, but it's not doing what the paper describes. Iifayibha ze-JavaScript ezikhoyo. Zifaka i-ports ezininzi ze-low-level language, zonke iimveliso zithembisa ngakumbi kwi-originals. Akukho umntu owaziwa kwi-MATLAB reference ngenxa yokuba i-MATLAB ihamba imali, kwaye ukuqhuba kwi-CI ayinayo. I ran into this when working on image comparison tools. I wanted reliable implementations of SSIM (Structural Similarity Index) and GMSD (Gradient Magnitude Similarity Deviation). The JavaScript options were either slow, inaccurate, or both. So I ported them myself and built a validation system to prove they match MATLAB. Idea: Ukusetyenzisa i-Octave is a free, open-source alternative to MATLAB. It is running the same iifayile, ikhiqiza imiphumo efanayo, kunye nokufaka kwi-CI yeenkonzo. Izixhobo elula: GNU Octave .m Take the original MATLAB implementation from the paper Run it in Octave with test images Ukusebenza i-JavaScript yakho ngeifoto efanayo Compare the results This isn't unit testing. It's ground-truth validation. You're not checking that your code behaves correctly according to your understanding. You're checking that it matches the reference implementation exactly. Here's what that looks like in practice: function runMatlabGmsd(img1Path: string, img2Path: string): number { const matlabScript = ` addpath('${matlabPath}'); img1 = imread('${img1Path}'); img2 = imread('${img2Path}'); if size(img1, 3) == 3, img1 = rgb2gray(img1); end if size(img2, 3) == 3, img2 = rgb2gray(img2); end result = GMSD(double(img1), double(img2)); fprintf('%.15f', result); `; const output = execSync(`octave --eval "${matlabScript}"`, { encoding: 'utf-8', }); const match = output.match(/(\d+\.\d+)/); return parseFloat(match[0]); } You call Octave from Node.js, parse the floating-point result, and compare it to your JavaScript output. Not compromising ambiguity - taking 15 decimal places. Starting Simple: GMSD I-GMSD ibonise i-image similarity usebenzisa i-gradients. I-GMSD ibonise iinkcukacha ze-edge yeifoto ezimbini, ibonise i-pixel-by-pixel, kwaye ibonelela i-score eyodwa. I-Lower ibonelela ngaphezulu. I-Zero ibonelela i-identical. The algorithm is based on . It's straightforward, well-documented, and has no existing JavaScript implementation. A clean slate to demonstrate the porting process. Xue, W., Zhang, L., Mou, X., & Bovik, A. C. (2013). "I-Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index." IEEE Transactions on Image Processing The MATLAB Reference is 35 lines: The original implementation function [score, quality_map] = GMSD(Y1, Y2) % Gradient Magnitude Similarity Deviation % Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik T = 170; Down_step = 2; dx = [1 0 -1; 1 0 -1; 1 0 -1]/3; dy = dx'; aveKernel = fspecial('average', 2); aveY1 = conv2(Y1, aveKernel, 'same'); aveY2 = conv2(Y2, aveKernel, 'same'); Y1 = aveY1(1:Down_step:end, 1:Down_step:end); Y2 = aveY2(1:Down_step:end, 1:Down_step:end); IxY1 = conv2(Y1, dx, 'same'); IyY1 = conv2(Y1, dy, 'same'); gradientMap1 = sqrt(IxY1.^2 + IyY1.^2); IxY2 = conv2(Y2, dx, 'same'); IyY2 = conv2(Y2, dy, 'same'); gradientMap2 = sqrt(IxY2.^2 + IyY2.^2); quality_map = (2*gradientMap1.*gradientMap2 + T) ./ (gradientMap1.^2 + gradientMap2.^2 + T); score = std2(quality_map); : The algorithm Downsample both images by 2x using an averaging filter Compute gradient magnitudes with Prewitt operators (3x3 edge detection) Ukubala i-similarity per-pixel 4. Yenza i-deviation ye-standard ye-similarity map The JavaScript Port The core idea: images that look similar have similar edges. A photo and its slightly compressed version have edges in the same places. A photo and a completely different photo don't. GMSD captures this by computing "gradient magnitude" - essentially, how strong the edges are at each pixel. It uses the Prewitt operator, a classic 3x3 filter that detects horizontal and vertical intensity changes. The magnitude combines both directions: . sqrt(horizontal² + vertical²) Kwi-MATLAB, oku i-one-liner kunye . In JavaScript, we loop through each pixel and its 8 neighbors: conv2 function computeGradientMagnitudes( luma: Float32Array, width: number, height: number ): Float32Array { const grad = new Float32Array(width * height); for (let y = 1; y < height - 1; y++) { for (let x = 1; x < width - 1; x++) { const idx = y * width + x; // Fetch 3x3 neighborhood const tl = luma[(y - 1) * width + (x - 1)]; const tc = luma[(y - 1) * width + x]; const tr = luma[(y - 1) * width + (x + 1)]; const ml = luma[y * width + (x - 1)]; const mr = luma[y * width + (x + 1)]; const bl = luma[(y + 1) * width + (x - 1)]; const bc = luma[(y + 1) * width + x]; const br = luma[(y + 1) * width + (x + 1)]; // Prewitt Gx = [1 0 -1; 1 0 -1; 1 0 -1]/3 const gx = (tl + ml + bl - tr - mr - br) / 3; // Prewitt Gy = [1 1 1; 0 0 0; -1 -1 -1]/3 const gy = (tl + tc + tr - bl - bc - br) / 3; grad[idx] = Math.sqrt(gx * gx + gy * gy); } } return grad; } Once you have gradient magnitudes for both images, GMSD compares them pixel-by-pixel and returns the standard deviation of the differences. High deviation means the edges are in different places. Low deviation means a similar structure. function computeStdDev(values: Float32Array): number { const len = values.length; if (len === 0) return 0; let sum = 0; for (let i = 0; i < len; i++) { sum += values[i]; } const mean = sum / len; let variance = 0; for (let i = 0; i < len; i++) { const diff = values[i] - mean; variance += diff * diff; } variance /= len; return Math.sqrt(variance); } Ukucaciswa This is where Octave earns its keep. We run the original MATLAB code and our JavaScript implementation on the same images and compare the outputs. The test function wraps Octave in a shell call: function runMatlabGmsd(img1Path: string, img2Path: string): number { const matlabPath = join(__dirname, '../matlab'); const matlabScript = [ `addpath('${matlabPath}')`, `img1 = imread('${img1Path}')`, `img2 = imread('${img2Path}')`, `if size(img1, 3) == 3, img1 = rgb2gray(img1); end`, `if size(img2, 3) == 3, img2 = rgb2gray(img2); end`, `result = GMSD(double(img1), double(img2))`, `fprintf('%.15f', result)`, ].join('; '); const output = execSync(`octave --eval "${matlabScript}"`, { encoding: 'utf-8', }); const match = output.match(/(\d+\.\d+)/); return parseFloat(match[0]); } Ukucacisa oku phantsi: — tells Octave where to find (the original MATLAB file from the paper) addpath GMSD.m — loads the test images imread — converts to grayscale if needed (GMSD works on luminance only) rgb2gray — MATLAB/Octave need floating-point input, not uint8 double() — outputs 15 decimal places, enough precision to catch subtle bugs fprintf('%.15f') I-regex ihambisa inombolo kwi-Octave output. I-Octave ihambisa ezinye iinkcukacha ze-startup, ngoko sincoma kuphela umphumela we-floating-point. Now the actual test. Using Vitest, but Jest or any other framework works the same: import { execSync } from 'node:child_process'; import { describe, expect, it } from 'vitest'; import { gmsd } from './index'; describe('GMSD - MATLAB Comparison', () => { it('should match MATLAB reference', async () => { const tsResult = gmsd(img1.data, img2.data, undefined, width, height, { downsample: 1, c: 170, }); const matlabResult = runMatlabGmsd(img1Path, img2Path); const percentDiff = Math.abs(tsResult - matlabResult) / matlabResult * 100; console.log(`TypeScript: ${tsResult.toFixed(6)}`); console.log(`MATLAB: ${matlabResult.toFixed(6)}`); console.log(`Diff: ${percentDiff.toFixed(2)}%`); // Accept <2% difference (boundary handling varies) expect(percentDiff).toBeLessThan(2); }); }); The key is setting the right tolerance. Too strict (0.0001%) and you'll chase floating-point ghosts. Too loose (10%) and real bugs slip through. I landed on 2% for GMSD after understanding the sources of the differences (more on that in Results). Kuba i-CI, i-Octave ifumaneka kwiiveki kwi-Ubuntu: name: Test on: [push, pull_request] jobs: test: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Install Octave run: sudo apt-get update && sudo apt-get install -y octave - name: Setup Node.js uses: actions/setup-node@v4 with: node-version: '20' - name: Install dependencies run: pnpm install - name: Run tests run: pnpm test Ngoku zonke iimpompo zibonisa i-JavaScript yakho kwi-MATLAB reference. Ukuba uqhagamshelane ngokufanelekileyo okanye uqhagamshelane i-coefficient, i-test ibonakaliswa. Akukho "ukubona ngokufanelekileyo." Results Image Pair TypeScript MATLAB Difference 1a vs 1b 0.088934 0.089546 0.68% 2a vs 2b 0.142156 0.143921 1.23% 3a vs 3b 0.067823 0.068412 0.86% 1a vs 1b 0.088934 0.089546 0.68% 2a vs 2b 0.142156 0.143921 1.23% 3A vs 3B 0.067823 0.068412 0.86% ngexesha The 0.68-1.23% difference comes from boundary handling in . MATLAB's mode handles image edges differently than my implementation. As a perceptual quality metric, this difference is acceptable because the relative rankings of image pairs remain identical. conv2 'same' Ukuphakamisa up: SSIM I-SSIM (i-Structural Similarity Index) yi-standard ye-industry yokuqinisekisa umgangatho we-image. I-SSIM ibandakanya i-luminosity, i-contrast, kunye ne-structure phakathi kweifoto ezimbini kwaye ibonelela i-score ye-0 ukuya kwi-1: I-higher ibonelela ngaphezulu. I-1.0 ibonelela i-identical. I-algorithm esuka kwi paper. Image quality assessment: from error visibility to structural similarity. It's widely cited, well understood, and already has JavaScript implementations. The complication is we're not starting from scratch. We're entering a space with existing libraries, so we can directly compare accuracy. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P (2004) IEEE Transactions on Image Processing I-Landscape yokufika The most popular JavaScript implementation is . It works. It returns plausible numbers. But nobody has validated it against the MATLAB reference. ssim.js Ndingathanda ukuqhagamshelwano. Iimiphumo zikhangisa: Library Difference from MATLAB ssim.js 0.05%-0.73% @blazediff/ssim 0.00%-0.03% iimveliso 0.05% 0.73% @blazediff/ssim 0.00%-0.03% Yintoni ukuya kwi-24x kakhulu. Akukho ngenxa ssim.js isithunyelwe kakuhle - kuyinto ukuvelisa okuzenzakalelayo. Kodwa izixazululo ezincinane zihlanganisa: iindidi Gaussian ezininzi ezahlukileyo, ukunceda auto-downsampling, ukulawula iintlobo ezahlukeneyo. Zonke ziquka ingxaki. The MATLAB Reference Wang's reference implementation is more complex than GMSD. The key addition is automatic downsampling. Large images get scaled down before comparison. This matches human perception (we don't notice single-pixel differences in a 4K image) and improves performance. Izixhobo zeCore: % Automatic downsampling f = max(1, round(min(M,N)/256)); if(f > 1) lpf = ones(f,f); lpf = lpf/sum(lpf(:)); img1 = imfilter(img1, lpf, 'symmetric', 'same'); img2 = imfilter(img2, lpf, 'symmetric', 'same'); img1 = img1(1:f:end, 1:f:end); img2 = img2(1:f:end, 1:f:end); end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) ./ ... ((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); mssim = mean2(ssim_map); The algorithm: Ukulungiselela ifumaneka ukuba umfanekiso ubukhulu ngaphezu kwe-256px ngalinye Isicelo window Gaussian (11x11, σ=1.5) ukucacisa izibalo zendawo Calculate mean (μ), variance (σ²), and covariance for each window 4 Combine into the SSIM formula with stability constants C1 and C2 Return the mean of all local SSIM values I-Port ye-JavaScript Iimpawu ezintathu ziquka ubunzima: iindidi Gaussian, i-convolution eyahlukileyo, kunye ne-downsampling filter. iindidi Gaussian MATLAB's creates an 11x11 Gaussian kernel. The JavaScript equivalent: fspecial('gaussian', 11, 1.5) function createGaussianWindow1D(size: number, sigma: number): Float32Array { const window = new Float32Array(size); const center = (size - 1) / 2; const twoSigmaSquared = 2 * sigma * sigma; let sum = 0; for (let i = 0; i < size; i++) { const d = i - center; const value = Math.exp(-(d * d) / twoSigmaSquared); window[i] = value; sum += value; } // Normalize so weights sum to 1 for (let i = 0; i < size; i++) { window[i] /= sum; } return window; } Notice that this creates a 1D window, not a 2D one. That's intentional because Gaussian filters are separable, meaning a 2D convolution can be split into two 1D passes. Same result, half the operations. Separable Convolution I-MATLAB applies a 2D kernel. For an 11x11 window on a 1000x1000 image, that's 121 million multiplications. Separable convolution cuts it to 22 million: filter2 function convolveSeparable( input: Float32Array, output: Float32Array, temp: Float32Array, width: number, height: number, kernel1d: Float32Array, kernelSize: number ): void { const pad = Math.floor(kernelSize / 2); // Pass 1: Horizontal convolution (input -> temp) for (let y = 0; y < height; y++) { const rowStart = y * width; for (let x = pad; x < width - pad; x++) { let sum = 0; const srcStart = rowStart + x - pad; for (let k = 0; k < kernelSize; k++) { sum += input[srcStart + k] * kernel1d[k]; } temp[rowStart + x] = sum; } } // Pass 2: Vertical convolution (temp -> output) const outWidth = width - kernelSize + 1; const outHeight = height - kernelSize + 1; let outIdx = 0; for (let y = 0; y < outHeight; y++) { for (let x = 0; x < outWidth; x++) { let sum = 0; const srcX = x + pad; for (let k = 0; k < kernelSize; k++) { sum += temp[(y + k) * width + srcX] * kernel1d[k]; } output[outIdx++] = sum; } } } Automatic Downsampling I-reference ye-MATLAB ihamba iifoto ezininzi kwe-256px usebenzisa i-box filter kunye ne-padding ye-simmetric: function downsampleImages( img1: Float32Array, img2: Float32Array, width: number, height: number, f: number ): { img1: Float32Array; img2: Float32Array; width: number; height: number } { // Create 1D averaging filter const filter1d = new Float32Array(f); const filterValue = 1 / f; for (let i = 0; i < f; i++) { filter1d[i] = filterValue; } // Apply separable filter with symmetric padding const temp = new Float32Array(width * height); const filtered1 = new Float32Array(width * height); const filtered2 = new Float32Array(width * height); convolveSeparableSymmetric(img1, filtered1, temp, width, height, filter1d, f); convolveSeparableSymmetric(img2, filtered2, temp, width, height, filter1d, f); // Subsample by taking every f-th pixel const newWidth = Math.floor(width / f); const newHeight = Math.floor(height / f); const downsampled1 = new Float32Array(newWidth * newHeight); const downsampled2 = new Float32Array(newWidth * newHeight); for (let y = 0; y < newHeight; y++) { for (let x = 0; x < newWidth; x++) { downsampled1[y * newWidth + x] = filtered1[y * f * width + x * f]; downsampled2[y * newWidth + x] = filtered2[y * f * width + x * f]; } } return { img1: downsampled1, img2: downsampled2, width: newWidth, height: newHeight }; } Ukukhangisa le step akufutshane nayiphi na ingxaki. Uyakwazi ukufumana i-SSIM scores. Kodwa akufutshane ne-reference, kwaye i-algorithm uqhuba ngokushesha kwizithombe ezininzi. Validation Same pattern as GMSD. Call Octave, compare results: function runMatlabSsim(img1Path: string, img2Path: string): number { const matlabPath = join(__dirname, '../matlab'); const matlabScript = [ `addpath('${matlabPath}')`, `img1 = imread('${img1Path}')`, `img2 = imread('${img2Path}')`, `if size(img1, 3) == 3, img1 = rgb2gray(img1); end`, `if size(img2, 3) == 3, img2 = rgb2gray(img2); end`, `result = ssim(double(img1), double(img2))`, `fprintf('%.15f', result)`, ].join('; '); const output = execSync(`octave --eval "${matlabScript}"`, { encoding: 'utf-8', }); const match = output.match(/(\d+\.\d+)/); return parseFloat(match[0]); } The tolerance is tighter here. SSIM is a well-defined algorithm with exact coefficients. If we're more than 0.05% off, something's wrong: it('should match MATLAB for images 1a vs 1b', async () => { const tsResult = ssim(png1.data, png2.data, undefined, width, height); const matlabResult = runMatlabSsim(img1Path, img2Path); const percentDiff = Math.abs(tsResult - matlabResult) / matlabResult * 100; // Strict: must be within 0.05% expect(percentDiff).toBeLessThan(0.05); }); Imiphumo Image Pair @blazediff/ssim MATLAB Difference 1a vs 1b 0.968753 0.968755 0.00% 2a vs 2b 0.912847 0.912872 0.00% 3a vs 3b 0.847621 0.847874 0.03% 1a vs 1b 0.968753 0.968755 0.00% 2A vs 2B 0.912847 0.912872 0.00% 3a vs 3b 0.847621 0.847874 0.03% Compared to ssim.js on the same images: Image Pair ssim.js MATLAB Difference 1a vs 1b 0.969241 0.968755 0.05% 2a vs 2b 0.916523 0.912872 0.40% 3a vs 3b 0.853842 0.847874 0.73% 1A vs 1B 0.969241 0.968755 0.05% 2A vs 2B 0.916523 0.912872 0.40% 3A vs 3B 0.853842 0.847874 0.73% Umbala we-0.03% ekusebenziseni kwimveliso yam kubonakala ngokugqithiselwe kwiphepha le-floating point. It is inevitable when translating between languages. The scores are functionally identical to MATLAB. Iingxaki ze-ssim.js ziquka iinketho ze-algorithmic: akukho i-auto-downsampling, i-approximation ye-Gauss, kunye neengxaki ze-boundary ezahlukileyo. Akukho i-bug, kodwa zihlanganisa kwi-error ye-measurable. Common Pitfalls Porting MATLAB to JavaScript looks straightforward until it isn't. These are the issues that cost me time. Array Indexing MATLAB arrays start at 1. JavaScript arrays start at 0. Everyone knows this. Everyone still gets bitten by it. I-bug yaziwa ngokufanelekileyo. Uyakwazi ukufumana i-off-by-one error kwi-pixel yokuqala. Uyakwazi ukufumana i-values ezincinane ezahlukileyo kwi-image boundaries, apho i-loops ziquka translate to but the neighbor access becomes , leyo ifumaneka kwi-index -1 xa is 0. for i = 1:height for (let i = 0; i < height; i++) img(i-1, j) img[(i-1) * width + j] i Fix: draw out a 3x3 example on paper before writing the loop. Check your boundary conditions explicitly. Column-Major vs Row-Major MATLAB stores matrices column-by-column. JavaScript TypedArrays store row-by-row. I-matrix ye-3x3 kwi-MATLAB: [1 4 7] [2 5 8] → stored as [1, 2, 3, 4, 5, 6, 7, 8, 9] [3 6 9] I-matrix efanayo kwi-JavaScript: [1 4 7] [2 5 8] → stored as [1, 4, 7, 2, 5, 8, 3, 6, 9] [3 6 9] Oku kubaluleke xa uthetha i-indexing. I-MATLAB becomes in JavaScript, not . img(row, col) img[row * width + col] img[col * height + row] Most image libraries already hand you row-major data, so you're fine. But if you're copying MATLAB matrix operations verbatim, watch out. Boundary Handling MATLAB's , , and iintlobo ezahlukeneyo ze-default behaviors: conv2 filter2 imfilter — no padding, output shrinks conv2(A, K) conv2 (A, K, 'same') - zero ukunxibelelana, output ubungakanani efanayo kunye input — no padding, output shrinks filter2(K, A, 'valid') imfilter(A, K, 'symmetric') — umnqweno we-mirror kwi-edges Yenza oku ngempumelelo, kwaye iziphumo zakho ziya kuthetha ngalinye i-pixel emgqeni. Kuba i-image ye-1000x1000 kunye ne-kernel ye-11x11, oko ~4% ye-pixel yakho. The SSIM reference uses Ukucinga padding for downsampling, then with mode for the main computation. Miss either detail, and you'll wonder why your numbers are 2% off. imfilter 'symmetric' filter2 'valid' Color Space Coefficients Converting RGB to grayscale seems simple. Multiply by coefficients, sum the channels. But which coefficients? I-MATLAB isicelo BT.601: rgb2gray Y = 0.298936 * R + 0.587043 * G + 0.114021 * B Some JavaScript libraries use BT.709: Y = 0.2126 * R + 0.7152 * G + 0.0722 * B abanye usebenzisa ubuncinane elula: Y = (R + G + B) / 3 The difference is negligible for most images. But if you're validating against MATLAB, use the exact BT.601 coefficients. Otherwise, you'll chase phantom bugs that are really just a grayscale conversion mismatch. Iingxaki zeMatlab MATLAB does things automatically that JavaScript won't: : MATLAB's converts uint8 (0-255) to float (0.0-255.0). If your JavaScript reads PNG data as Uint8ClampedArray and you forget to convert, your variance calculations will overflow. Auto-casting double(img) : MATLAB functions have default values buried in their documentation. SSIM uses Ukucinga , window size 11, sigma 1.5. Miss one, and your implementation diverges. Default parameters K = [0.01, 0.03] L = 255 Optimizing Your JavaScript Ukucaciswa kuqala. Kodwa xa ukuqhagamshelwano wakho uqhagamshelwano MATLAB, ukusebenza kubaluleke. I-algorithms yenzulululwazi ifakwe ama-millions ye-pixel. Iingxaki ezincinane ziquka. These optimizations made my SSIM implementation 25-70% faster than ssim.js while maintaining accuracy. Ukusetyenziswa kweTypedArrays Iintlobo ze-JavaScript eziqhelekileyo ziyafumaneka. Zifumaneka iintlobo ze-mixed, zikhula ngokugqithisileyo, kwaye ziyafumaneka izindlela ezisetyenziswayo. I-flexibility ihlawula ukusebenza. // Slow: regular array const pixels = []; for (let i = 0; i < width * height; i++) { pixels.push(image[i] * 0.299); } // Fast: TypedArray const pixels = new Float32Array(width * height); for (let i = 0; i < width * height; i++) { pixels[i] = image[i] * 0.299; } TypedArrays have fixed size, fixed type, and contiguous memory. The JavaScript engine knows precisely how to optimize them. For numerical code, this is a 2-5x speedup. Use iiyure ezininzi. ukusetyenziswa xa ufuna ukucaciswa okhethekileyo (ukuphefumula amaxabiso kwiifoto ezininzi). Ukusuka kwimifanekiso ekupheleni. Float32Array Float64Array Uint8ClampedArray Iifilimu ezahlukileyo A 2D convolution with an NxN kernel requires N² multiplications per pixel. For SSIM's 11x11 Gaussian, that's 121 operations per pixel. But Gaussian filters are separable. A 2D Gaussian is the outer product of two 1D Gaussians. Instead of one 11x11 pass, you do two 11x1 passes: 22 operations per pixel. // Slow: 2D convolution (N² operations per pixel) for (let y = 0; y < height; y++) { for (let x = 0; x < width; x++) { let sum = 0; for (let ky = 0; ky < kernelSize; ky++) { for (let kx = 0; kx < kernelSize; kx++) { sum += getPixel(x + kx, y + ky) * kernel2d[ky][kx]; } } output[y * width + x] = sum; } } // Fast: separable convolution (2N operations per pixel) // Pass 1: horizontal for (let y = 0; y < height; y++) { for (let x = 0; x < width; x++) { let sum = 0; for (let k = 0; k < kernelSize; k++) { sum += getPixel(x + k, y) * kernel1d[k]; } temp[y * width + x] = sum; } } // Pass 2: vertical for (let y = 0; y < height; y++) { for (let x = 0; x < width; x++) { let sum = 0; for (let k = 0; k < kernelSize; k++) { sum += temp[(y + k) * width + x] * kernel1d[k]; } output[y * width + x] = sum; } } This works for any separable kernel: Gaussian, box filter, or Sobel. Check if your kernel is separable before implementing 2D convolution. I-Reuse Buffer I-Memory Allocation i-expensive. I-Garbage Collection i-aggregated. I-Allocate once, i-Reuse everywhere. // Slow: allocate per operation function computeVariance(img: Float32Array): Float32Array { const squared = new Float32Array(img.length); // allocation const filtered = new Float32Array(img.length); // allocation // ... } // Fast: pre-allocate and reuse class SSIMComputer { private temp: Float32Array; private squared: Float32Array; constructor(maxSize: number) { this.temp = new Float32Array(maxSize); this.squared = new Float32Array(maxSize); } compute(img: Float32Array): number { // reuse this.temp and this.squared } } For SSIM, I allocate all buffers upfront: grayscale images, squared images, filtered outputs, and the SSIM map. One allocation at the start, zero during computation. Cache Iimpawu ze-computed Zonke iimveliso zithunyelwe kwakhona. Ungayifaka ezimbini. // Slow: recompute Gaussian window every call function ssim(img1, img2, width, height) { const window = createGaussianWindow(11, 1.5); // expensive // ... } // Fast: cache by parameters const windowCache = new Map<string, Float32Array>(); function getGaussianWindow(size: number, sigma: number): Float32Array { const key = `${size}_${sigma}`; let window = windowCache.get(key); if (!window) { window = createGaussianWindow(size, sigma); windowCache.set(key, window); } return window; } The Gaussian window for SSIM is always 11x11 with σ=1.5. Computing it takes microseconds. But when you're processing thousands of images, microseconds add up. Avoid Bounds Checking in Hot Loops JavaScript arrays check bounds on every access. For interior pixels where you know indices are valid, this is wasted work. // Slow: bounds checking on every access for (let y = 0; y < height; y++) { for (let x = 0; x < width; x++) { const left = x > 0 ? img[y * width + x - 1] : 0; const right = x < width - 1 ? img[y * width + x + 1] : 0; // ... } } // Fast: handle borders separately // Interior pixels (no bounds checking needed) for (let y = 1; y < height - 1; y++) { for (let x = 1; x < width - 1; x++) { const left = img[y * width + x - 1]; // always valid const right = img[y * width + x + 1]; // always valid // ... } } // Handle border pixels separately with bounds checking This is uglier code. But for a 1000x1000 image, you're removing millions of conditional checks. Results Benchmarked kwiimifanekiso efanayo, umatshini efanayo: Implementation Time (avg) vs MATLAB accuracy ssim.js 86ms 0.05-0.73% @blazediff/ssim 64ms 0.00-0.03% iimveliso 86ms 0.05-0.73% @Blazediff/SIM 64Ms 0.00-0.03% 25% faster and more accurate. Not because of clever algorithms — because of careful engineering. TypedArrays, separable filters, buffer reuse, cached windows. For the variant (uses integral images instead of convolution), the gap is wider: 70% faster than ssim.js on large images. I-Hitchhiker ye-SSIM Ukucinga Porting scientific algorithms from MATLAB to JavaScript is mechanical once you have the proper process. . Papers describe algorithms. MATLAB code implements them. These aren't the same thing. Edge cases, default parameters, boundary handling - they're in the code, not the paper. Start with the Iifayile Use the reference implementation .m . It's free, runs everywhere, and executes MATLAB code without modification. Set up ground-truth tests early. Run them in CI. When your numbers match to 4 decimal places, you're done. When they don't, you know immediately. Validate with Octave . Get your implementation matching MATLAB before optimizing. A fast wrong answer is still wrong. Once you're accurate, the optimizations are straightforward: TypedArrays, separable filters, buffer reuse. Accuracy first, then performance . Sometimes you won't match exactly. Boundary handling, floating-point precision, and intentional simplifications. That's fine. Know why you differ and by how much. Write it down. Document your differences Ukubala phakathi kwe-ACADEMIC MATLAB kunye neJavaScript yokukhiqiza kunzima kunokwenzeka. I-algorithms yinto efanayo. I-mathematics yinto efanayo. Ufuna indlela yokubonisa ukuba uye uyilo. Iimveliso ze-SSIM kunye ne-GMSD eziyi nqaku ziyafumaneka kwi- [blazediff.dev] (https://blazediff.dev). I-MIT isebenze, i-zero dependencies, i-validated against MATLAB.