O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. U o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘ This article delves into constructing such an AI research agent using Superlinked's complex document embedding capabilities. By integrating semantic and temporal relevance, we eliminate the need for complex reranking, ensuring efficient and accurate retrieval of information. Superlinked‘in kompleks dokument embedding kapasitativini kullandim. Semantic and temporal relevance integrating, we eliminate the need for complex rearranging, ensuring efficient and accurate retrieval of information. TL;DR: Superlinked's vektor search.It superbs complex RAG pipelines by embedding and querying documents directly - making research faster, simpler, and smarter. (Hayni o‘zingizni ko‘qda o‘zingizni o‘zingizni o‘zingizni o‘zingizni o‘zingizni? GitHub-da open source qilmadi. . Burda Burda Burda Biz buradayik . yardım yardım yardım O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. here’s the . Kolob . Kolob Kolob Nadi o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z? Traditionally, building such a system involves complexity and considerable resource investment. Search systems typically retrieve an initial broad set of documents based on relevance and subsequently applies a secondary reranking process to refinish and reorder results. While reranking enhances accuracy, it significantly increases computational complexity, latency, and overhead due to the extensive data retrieval initially required. Superlinked addresses this complexity by combining structured numeric and categorical embeddings with semantic text embeddings, providing comprehensive multimodal vectors. This method significantly enhances search accuracy by preserving attribute-specific information within each embedding. Superlinked sistemini qoysan. Bu agentni 3 o‘z o‘z o‘z: Search Papers: Search for research papers by topic (yani “quantum computing”) o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. U bilan o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Qiyamlar: Qiyamlar o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Superlinked o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Step 1 : Toolbox qaytaradi %pip install superlinked Abstract Tool klasa qoʻyim, o‘z sizga qoʻyim, o‘z sizga qoʻyim. import pandas as pd import superlinked.framework as sl from datetime import timedelta from sentence_transformers import SentenceTransformer from openai import OpenAI import os from abc import ABC, abstractmethod from typing import Any, Optional, Dict from tqdm import tqdm from google.colab import userdata # Abstract Tool Class class Tool(ABC): @abstractmethod def name(self) -> str: pass @abstractmethod def description(self) -> str: pass @abstractmethod def use(self, *args, **kwargs) -> Any: pass # Get API key from Google Colab secrets try: api_key = userdata.get('OPENAI_API_KEY') except KeyError: raise ValueError("OPENAI_API_KEY not found in user secrets. Please add it using Tools > User secrets.") # Initialize OpenAI Client api_key = os.environ.get("OPENAI_API_KEY", "your-openai-key") # Replace with your OpenAI API key if not api_key: raise ValueError("Please set the OPENAI_API_KEY environment variable.") client = OpenAI(api_key=api_key) model = "gpt-4" Step 2 : Dataset qilmadi Bu nümunadda data setni 10,000 AI research papur o‘zingizdir. O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z Kadiq import pandas as pd !wget --no-check-certificate 'https://drive.google.com/uc?export=download&id=1FCR3TW5yLjGhEmm-Uclw0_5PWVEaLk1j' -O arxiv_ai_data.csv Biz o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘. df = pd.read_csv('arxiv_ai_data.csv').head(100) # Convert to datetime but keep it as datetime (more readable and usable) df['published'] = pd.to_datetime(df['published']) # Ensure summary is a string df['summary'] = df['summary'].astype(str) # Add 'text' column for similarity search df['text'] = df['title'] + " " + df['summary'] Debug: Columns in original DataFrame: ['authors', 'categories', 'comment', 'doi', 'entry_id', 'journal_ref' 'pdf_url', 'primary_category', 'published', 'summary', 'title', 'updated'] Dataset Columns (dataset kolomlar) Bu data kolonlarimizda qilmizdir, o‘z o‘z qilmizdir, o‘z qilmizdir: O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract. Entry_id: arXiv-i o‘z o‘z o‘z o‘z o‘z o‘z. Bu demonstrasyonda biz 4 kolonda konsantrasiyadi: O‘z, O‘z, O‘z U optimize search quality, titlab o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. entry_id published title summary Superlinked's In-Memory Indexer: Superlinked's in-memory indexing va datasetimizni direkt RAM-i qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z. Step 3 : Superlinked Schema definishadi Biz o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z Key fieldlar: PaperSchema lass PaperSchema(sl.Schema): text: sl.String published: sl.Timestamp # This will handle datetime objects properly entry_id: sl.IdField title: sl.String summary: sl.String paper = PaperSchema() Superlinked spaces o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z Bizni data setni organizing and effectively querying o‘z iki specialized vector spaces defining: TextSimilaritySpace and RecencySpace. TextSimilaritySpace O‘z Tekstil informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding. TextSimilaritySpace text_space = sl.TextSimilaritySpace( text=sl.chunk(paper.text, chunk_size=200, chunk_overlap=50), model="sentence-transformers/all-mpnet-base-v2" ) Recenziyalar O‘z O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z RecencySpace recency_space = sl.RecencySpace( timestamp=paper.published, period_time_list=[ sl.PeriodTime(timedelta(days=365)), # papers within 1 year sl.PeriodTime(timedelta(days=2*365)), # papers within 2 years sl.PeriodTime(timedelta(days=3*365)), # papers within 3 years ], negative_filter=-0.25 ) RecencySpace o‘z filtravadi, o‘z e-mail o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. 365 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. 1095 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. O‘z U o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. negative_filter Paper A: Published in 1996 Paper B: Published in 1993 Scoring example: - Text similarity score: Both papers get 0.8 - Recency score: - Paper A: Receives the full recency boost (1.0) - Paper B: Gets penalized (-0.25 due to negative_filter) Final combined scores: - Paper A: Higher final rank - Paper B: Lower final rank Bu spazmatlar data setni daha aksesib, efikasiz qoysan. Bunlar ko‘rida bazadi və ko‘rida bazadi ko‘rida, o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. U 4 : Index bo‘ladi O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z: paper_index = sl.Index([text_space, recency_space]) DataFrame o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z. # Parser to map DataFrame columns to schema fields parser = sl.DataFrameParser( paper, mapping={ paper.entry_id: "entry_id", paper.published: "published", paper.text: "text", paper.title: "title", paper.summary: "summary", } ) # Set up in-memory source and executor source = sl.InMemorySource(paper, parser=parser) executor = sl.InMemoryExecutor(sources=[source], indices=[paper_index]) app = executor.run() # Load the DataFrame with a progress bar using batches batch_size = 10 data_batches = [df[i:i + batch_size] for i in range(0, len(df), batch_size)] for batch in tqdm(data_batches, total=len(data_batches), desc="Loading Data into Source"): source.put([batch]) Superlinked o‘z o‘z o‘z o‘z superlinked – 1000 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Step 5 : Crafting Qoyni. O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z # Define the query knowledgebase_query = ( sl.Query( paper_index, weights={ text_space: sl.Param("relevance_weight"), recency_space: sl.Param("recency_weight"), } ) .find(paper) .similar(text_space, sl.Param("search_query")) .select(paper.entry_id, paper.published, paper.text, paper.title, paper.summary) .limit(sl.Param("limit")) ) Bu o‘z bizni qilmadi, o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Step 6 : Tools bo‘ladi O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Biz o‘z 3 instrument yaradi... Bu toolni superlinked'in indeksini qilmadi, o‘z 5 qilmadi qilmadi, o‘z qilmidi qilmadi. Bu toolni qilmidi qilmidi, o‘z qilmidi, o‘z qilmidi, o‘z qilmidi qilmidi. class RetrievalTool(Tool): def __init__(self, df, app, knowledgebase_query, client, model): self.df = df self.app = app self.knowledgebase_query = knowledgebase_query self.client = client self.model = model def name(self) -> str: return "RetrievalTool" def description(self) -> str: return "Retrieves a list of relevant papers based on a query using Superlinked." def use(self, query: str) -> pd.DataFrame: result = self.app.query( self.knowledgebase_query, relevance_weight=1.0, recency_weight=0.5, search_query=query, limit=5 ) df_result = sl.PandasConverter.to_pandas(result) # Ensure summary is a string if 'summary' in df_result.columns: df_result['summary'] = df_result['summary'].astype(str) else: print("Warning: 'summary' column not found in retrieved DataFrame.") return df_result O‘z o‘z o‘z O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Summarization Tool paper_id paper_id class SummarizationTool(Tool): def __init__(self, df, client, model): self.df = df self.client = client self.model = model def name(self) -> str: return "SummarizationTool" def description(self) -> str: return "Generates a concise summary of specified papers using an LLM." def use(self, query: str, paper_ids: list) -> str: papers = self.df[self.df['entry_id'].isin(paper_ids)] if papers.empty: return "No papers found with the given IDs." summaries = papers['summary'].tolist() summary_str = "\n\n".join(summaries) prompt = f""" Summarize the following paper summaries:\n\n{summary_str}\n\nProvide a concise summary. """ response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=500 ) return response.choices[0].message.content.strip() Biz o‘z bizni O‘z o‘z o‘z o‘z o‘z o‘z o‘z Siz o‘z sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga QuestionAnsweringTool RetrievalTool class QuestionAnsweringTool(Tool): def __init__(self, retrieval_tool, client, model): self.retrieval_tool = retrieval_tool self.client = client self.model = model def name(self) -> str: return "QuestionAnsweringTool" def description(self) -> str: return "Answers questions about research topics using retrieved paper summaries or general knowledge if no specific context is available." def use(self, query: str) -> str: df_result = self.retrieval_tool.use(query) if 'summary' not in df_result.columns: # Tag as a general question if summary is missing prompt = f""" You are a knowledgeable research assistant. This is a general question tagged as [GENERAL]. Answer based on your broad knowledge, not limited to specific paper summaries. If you don't know the answer, provide a brief explanation of why. User's question: {query} """ else: # Use paper summaries for specific context contexts = df_result['summary'].tolist() context_str = "\n\n".join(contexts) prompt = f""" You are a research assistant. Use the following paper summaries to answer the user's question. If you don't know the answer based on the summaries, say 'I don't know.' Paper summaries: {context_str} User's question: {query} """ response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=500 ) return response.choices[0].message.content.strip() U 7 : Kernel Agents bo‘ladi Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. class KernelAgent: def __init__(self, retrieval_tool: RetrievalTool, summarization_tool: SummarizationTool, question_answering_tool: QuestionAnsweringTool, client, model): self.retrieval_tool = retrieval_tool self.summarization_tool = summarization_tool self.question_answering_tool = question_answering_tool self.client = client self.model = model def classify_query(self, query: str) -> str: prompt = f""" Classify the following user prompt into one of the three categories: - retrieval: The user wants to find a list of papers based on some criteria (e.g., 'Find papers on AI ethics from 2020'). - summarization: The user wants to summarize a list of papers (e.g., 'Summarize papers with entry_id 123, 456, 789'). - question_answering: The user wants to ask a question about research topics and get an answer (e.g., 'What is the latest development in AI ethics?'). User prompt: {query} Respond with only the category name (retrieval, summarization, question_answering). If unsure, respond with 'unknown'. """ response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=10 ) classification = response.choices[0].message.content.strip().lower() print(f"Query type: {classification}") return classification def process_query(self, query: str, params: Optional[Dict] = None) -> str: query_type = self.classify_query(query) if query_type == 'retrieval': df_result = self.retrieval_tool.use(query) response = "Here are the top papers:\n" for i, row in df_result.iterrows(): # Ensure summary is a string and handle empty cases summary = str(row['summary']) if pd.notna(row['summary']) else "" response += f"{i+1}. {row['title']} \nSummary: {summary[:200]}...\n\n" return response elif query_type == 'summarization': if not params or 'paper_ids' not in params: return "Error: Summarization query requires a 'paper_ids' parameter with a list of entry_ids." return self.summarization_tool.use(query, params['paper_ids']) elif query_type == 'question_answering': return self.question_answering_tool.use(query) else: return "Error: Unable to classify query as 'retrieval', 'summarization', or 'question_answering'." Bu etapda, bütün componentlar Research Agent Systemni konfigiradi. Sistemni ko‘zida Kernel Agentni qo‘zingizga, o‘zi Research Agent Systemni ko‘zingizga qilmadi. retrieval_tool = RetrievalTool(df, app, knowledgebase_query, client, model) summarization_tool = SummarizationTool(df, client, model) question_answering_tool = QuestionAnsweringTool(retrieval_tool, client, model) # Initialize KernelAgent kernel_agent = KernelAgent(retrieval_tool, summarization_tool, question_answering_tool, client, model) Biz sistemini test edim. # Test query print(kernel_agent.process_query("Find papers on quantum computing in last 10 years")) O‘z o‘z activate O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z RetrievalTool Query type: retrieval Here are the top papers: 1. Quantum Computing and Phase Transitions in Combinatorial Search Summary: We introduce an algorithm for combinatorial search on quantum computers that is capable of significantly concentrating amplitude into solutions for some NP search problems, on average. This is done by... 1. The Road to Quantum Artificial Intelligence Summary: This paper overviews the basic principles and recent advances in the emerging field of Quantum Computation (QC), highlighting its potential application to Artificial Intelligence (AI). The paper provi... 1. Solving Highly Constrained Search Problems with Quantum Computers Summary: A previously developed quantum search algorithm for solving 1-SAT problems in a single step is generalized to apply to a range of highly constrained k-SAT problems. We identify a bound on the number o... 1. The model of quantum evolution Summary: This paper has been withdrawn by the author due to extremely unscientific errors.... 1. Artificial and Biological Intelligence Summary: This article considers evidence from physical and biological sciences to show machines are deficient compared to biological systems at incorporating intelligence. Machines fall short on two counts: fi... Biz o‘z o‘z, o‘z o‘z, o‘z o‘z, o‘z o‘z o‘z, o‘z o‘z o‘z. print(kernel_agent.process_query("Summarize this paper", params={"paper_ids": ["http://arxiv.org/abs/cs/9311101v1"]})) Query type: summarization This paper discusses the challenges of learning logic programs that contain the cut predicate (!). Traditional learning methods cannot handle clauses with cut because it has a procedural meaning. The proposed approach is to first generate a candidate base program that covers positive examples, and then make it consistent by inserting cut where needed. Learning programs with cut is difficult due to the need for intensional evaluation, and current induction techniques may need to be limited to purely declarative logic languages. U o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘. Bu o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z! Repository O‘zlar Notebook kodlar Semantic and temporal relevancy kombinasiyalarda kompleks reranking qilmadi o‘z o‘z o‘z o‘z o‘z qilmadi. Negative_filter=-0,25) o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. Modular tool-based architecture sizga specialization components to handle distinct tasks (recovery, summarization, question-answering) o‘z sistem cohesion. Bu batch_size=10 (batch_size=10) data bo‘lashing sistem stability bo‘lashing big research data sets. Adjustable query weights sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga Qodgan qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni. Agentsik AI assistant workflow o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z. contributorlar Vipul Maheshwari, autor Filip Makraduli, bilan bilan bilan