paint-brush
चिपनेमो: चिप डिजाइन के लिए डोमेन-अनुकूलित एलएलएम: निष्कर्षद्वारा@textmodels

चिपनेमो: चिप डिजाइन के लिए डोमेन-अनुकूलित एलएलएम: निष्कर्ष

द्वारा Writings, Papers and Blogs on Text Models2m2024/06/06
Read on Terminal Reader

बहुत लंबा; पढ़ने के लिए

शोधकर्ताओं ने चिपनेमो प्रस्तुत किया है, जो चिप डिजाइन के लिए एलएलएम को बढ़ाने के लिए डोमेन अनुकूलन का उपयोग करता है, जिससे बेहतर प्रदर्शन के साथ मॉडल आकार में 5 गुना तक की कमी आती है।
featured image - चिपनेमो: चिप डिजाइन के लिए डोमेन-अनुकूलित एलएलएम: निष्कर्ष
Writings, Papers and Blogs on Text Models HackerNoon profile picture
0-item

लेखक:

(1) मिंगजी लियू, एनवीडिया {समान योगदान};

(2) टेओडोर-डुमित्रु एने, एनवीडिया {समान योगदान};

(3) रॉबर्ट किर्बी, एनवीडिया {समान योगदान};

(4) क्रिस चेंग, एनवीडिया {समान योगदान};

(5) नाथनियल पिंकनी, एनवीडिया {समान योगदान};

(6) रोंगजियान लियांग, एनवीडिया {समान योगदान};

(7) जोना अल्बेन, एनवीडिया;

(8) हिमांशु आनंद, एनवीडिया;

(9) संमित्रा बनर्जी, एनवीडिया;

(10) इस्मेट बेराकटारोग्लू, एनवीडिया;

(11) बोनिता भास्करन, एनवीडिया;

(12) ब्रायन कैटनज़ारो, एनवीडिया;

(13) अर्जुन चौधरी, एनवीडिया;

(14) शेरोन क्ले, एनवीडिया;

(15) बिल डैली, एनवीडिया;

(16) लौरा डांग, एनवीडिया;

(17) परीक्षित देशपांडे, एनवीडिया;

(18) सिद्धनाथ ढोढ़ी, एनवीडिया;

(19) समीर हालेपेट, एनवीडिया;

(20) एरिक हिल, एनवीडिया;

(21) जियाशांग हू, एनवीडिया;

(22) सुमित जैन, एनवीडिया;

(23) ब्रुसेक खैलानी, एनवीडिया;

(24) जॉर्ज कोकाई, एनवीडिया;

(25) किशोर कुणाल, एनवीडिया;

(26) ज़ियाओवेई ली, एनवीडिया;

(27) चार्ली लिंड, एनवीडिया;

(28) हाओ लियू, एनवीडिया;

(29) स्टुअर्ट ओबरमैन, एनवीडिया;

(30) सुजीत उमर, एनवीडिया;

(31) श्रीधर प्रट्टी, एनवीडिया;

(23) जोनाथन रायमन, एनवीडिया;

(33) अंबर सरकार, एनवीडिया;

(34) झेंगजियांग शाओ, एनवीडिया;

(35) हनफ़ेई सन, एनवीडिया;

(36) प्रतीक पी सुथार, एनवीडिया;

(37) वरुण तेज, एनवीडिया;

(38) वॉकर टर्नर, एनवीडिया;

(39) कैझे जू, एनवीडिया;

(40) हॉक्सिंग रेन, एनवीडिया.

लिंक की तालिका

आठवीं. निष्कर्ष

लेखक निम्नलिखित को धन्यवाद देना चाहते हैं: NVBugs एकीकरण पर उनके समर्थन के लिए NVIDIA आईटी टीम; सुरक्षा मुद्दों पर उनके समर्थन के लिए NVIDIA हार्डवेयर सुरक्षा टीम; ChipNeMo मॉडलों के प्रशिक्षण और अनुमान पर उनके समर्थन और मार्गदर्शन के लिए NVIDIA NeMo टीम; परियोजना के लिए GPU प्रशिक्षण और अनुमान संसाधनों का समर्थन करने के लिए NVIDIA अवसंरचना टीम; उनके समर्थन और अंतर्दृष्टि के लिए NVIDIA हार्डवेयर डिजाइन टीम।


यह पेपर CC 4.0 लाइसेंस के अंतर्गत arxiv पर उपलब्ध है।