ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu)ERROR: invalid target_lang (eu) ERROR: invalid target_lang (eu) Instead of spending hours searching documentation, use AI tools to get concise, relevant explanations quickly. Is there a utility function that is 500 lines long that you can’t quite understand the need for? Have an LLM translate that for you into clear, actionable understandable steps. Leverage AI for Faster Learning: Have an idea for solving a bug? Run it by an AI model to get alternative approaches before implementing. Be mindful - there’s bound to be business context or reasoning to do things in certain ways. The riskiest approach you can possibly take is to hit tab, let Copilot fill in the blanks and forget. Use AI for Idea Validation: AI can provide solutions, but understanding those solutions work (or don’t work) is a key differentiator of a strong engineer. You can also strengthen your code review skills by reviewing the AI’s code- dive in and have a dialogue about different approaches (“consider a switch case and provide me an explanation as to the pros and cons of doing so in this method”). Strengthen Problem-Solving Skills: why AI can generate code, but it won’t replace creative problem-solving, stakeholder communication, or the ability to think critically about a project’s goals. If an AI can write code that works, that’s great, but how can you as an engineer convey the solution to the problem to stakeholders and also update it if it doesn’t solve for all the required cases? Collaborate and Think Beyond Code: Soft skills, system design, and understanding business impact remain vital. AI can be a tool, but it won’t replace engineers who drive meaningful innovation. Focus on Growth Beyond Coding: