Anualmente, más de 1.400 millones de personas en todo el mundo recurren a aplicaciones de transporte compartido, y solo Rusia representa más de 2.500 millones de viajes al año. La responsabilidad de encontrar a cada pasajero con el conductor ideal para cada viaje recae directamente sobre los hombros del servicio de transporte compartido. Entonces, ¿cómo abordan los líderes del mercado esta compleja tarea? Al procesar gigabytes de datos en tiempo real y desplegar algoritmos, incluidos aquellos basados en aprendizaje automático, garantizan que el pasajero esté emparejado con el conductor más adecuado.
Pero, ¿cómo se sintetizan exactamente todos estos puntos de datos? A alto nivel, el proceso implica varios pasos críticos:
El siguiente paso implica el procesamiento por lotes: agregar pedidos cercanos durante un período y luego redistribuir inteligentemente a los conductores entre estos pedidos para garantizar que cada uno reciba la mejor combinación. Esta estrategia permite a las empresas asignar conductores en menos de medio minuto, reduciendo significativamente el tiempo de espera de los clientes.
Sin embargo, este nivel de eficiencia sólo se puede lograr cuando se tiene:
Ahora, permítanme compartir mi experiencia en uno de los servicios de taxi más populares a nivel mundial, donde actué en este proyecto como Gerente de Producto en el dominio Marketplace responsable de la confiabilidad de los clientes y las ganancias de la empresa como objetivos clave. Siendo responsable tanto de las integraciones de partners como de producto, así como de la optimización de la lógica de asignación de suministro mediante herramientas de aprendizaje automático. ¡Vamos!
La plataforma en el Reino Unido se lanzó en 2019. Cada vez que la lanzamos, teníamos que configurar la configuración de una forma u otra. En general, funcionó para nosotros: logramos cifras de confiabilidad aceptables (en el mercado de viajes compartidos, la principal métrica de confiabilidad generalmente representa la proporción de viajes completados con éxito con respecto a todos los pedidos de los clientes). Sin embargo, en muchos casos, nuestras decisiones se basaron más en "la experiencia" que en los datos: utilizamos el conocimiento del personal de la plataforma de movilidad para asesorar sobre las fortalezas de cada socio.
Fue maravilloso ver que nuestra propuesta de valor única realmente funcionaba, era utilizada por los clientes y generaba ingresos. Sin embargo, la empresa ya había adquirido experiencia en la búsqueda de conductores y sabíamos que podíamos optimizar el mercado de intercambio de viajes. Entonces, nuestros ingenieros de ML se pusieron a trabajar y los resultados fueron alentadores: cada métrica clave, en promedio, aumentó un 5 %. También fue sorprendente ver cuán incorrectamente se habían configurado algunas de nuestras configuraciones antes. Aunque estábamos operando en dos mercados completamente diferentes (más adelante hablaremos más sobre la experiencia rusa), el patrón se repitió. Todavía había margen de mejora ajustando gradualmente el peso de las funciones, introduciendo nuevas funciones o descartando algunas. Sin embargo, algunas áreas (ciudades remotas o simplemente lugares donde la plataforma de inmovilidad no tiene una base de clientes sólida) tuvieron que permanecer bajo control manual. Sin embargo, la "plataforma Ride Exchange" se volvió más inteligente, más confiable y rentable. Sin mencionar que nos convertimos en los primeros en el mundo en crear un mercado de servicios de transporte totalmente integrados para clientes en una sola aplicación, y también en los primeros en impulsarlo con ML.
La métrica principal para nosotros es el porcentaje de clientes satisfechos que reservaron un viaje y finalmente lo llevaron a su destino deseado (GC/GCR – Tasa bruta de finalización).
10%/20%/50% –> Aumento del porcentaje de implementación del modelo ML en lugar de configuración de búsqueda manual de controladores. La línea azul ilustra el rendimiento de la métrica GCR (tasa bruta de finalización) utilizando el modelo ML. En contraste con el GCR en la línea roja: configuración de búsqueda manual de controladores.
Desde el lanzamiento, he experimentado mucho con la plataforma y he aprendido muchas lecciones. Algunos de ellos incluyen:
El escenario inicial
Cuando entramos en la década de 2020, los servicios de taxi en Rusia eran prestados por alrededor de 4.300 organizaciones, en su mayoría entidades privadas. La proliferación de empresas comerciales se atribuyó a una reducción de las restricciones estatales a la emisión de permisos y a las medidas regulatorias sobre el control arancelario. Esto provocó un aumento de las pequeñas empresas y una intensa competencia en el mercado. En ese momento, mi plataforma de movilidad operaba como un agregador de servicios de taxi estándar, compitiendo con otros actores del mercado como Uber, Yandex y Citymobil tanto por clientes como por conductores. El mercado del taxi se enfrentaba a pérdidas debido a la creciente competencia, mientras que los cambios en la demanda de los consumidores complicaban aún más el panorama.
Misión
La plataforma de movilidad tenía como objetivo unir a todos los posibles actores del transporte en todo el mundo en una sola plataforma, creando un nivel de servicio fundamentalmente nuevo para clientes corporativos que prioriza la velocidad de llegada del automóvil y los costos de viaje optimizados. La plataforma de movilidad aseguró la mayor base de conductores en Rusia a través de acuerdos y asociaciones estratégicas, particularmente con Citymobil en 2020 y otro actor importante en 2021.
El objetivo de nuestro equipo de producto Después de estos acuerdos de colaboración, tuve que sincronizar numerosos procesos. Una de las tareas clave fue optimizar la distribución de los pedidos de los clientes en la plataforma entre los proveedores para mejorar la confiabilidad y reducir los costos de cada viaje. Sin embargo, surgió una pregunta crítica del mercado: ¿Cómo decidir a quién utilizar y cuándo de la mejor manera para el cliente?
Pasos
Dos factores a considerar: los gastos principales no están relacionados con el viaje: costos de adquisición y operativos.
Estos puntos de datos ilustran más bien cómo las decisiones impulsadas por ML superan a las tomadas manualmente.
Métricas principales