Table of Links Abstract and 1. Introduction 2. Methods 2.1. Modeling Panspermia and Terraformation 2.2. Identifying the Presence of Terraformed Planets and 2.3. Software and Availability 3. Results 3.1. Panspermia can increase the correlation between planets’ compositions and positions 3.2. Likely terraformed planets can be identified from clustering 4. Summary and Discussion 5. Acknowledgements and References APPENDIX A. Appendix 5. ACKNOWLEDGEMENTS The authors would like to thank Estelle Janin and Cole Mathis for encouraging and productive conversations, and for feedback on the manuscript. REFERENCES Affholder, A., Guyot, F., Sauterey, B., Ferri`ere, R., & Mazevet, S. 2021, Nature Astronomy, doi: 10.1038/s41550-021-01372-6 Balbi, A., & Grimaldi, C. 2020, Proceedings of the National Academy of Sciences, 117, 21031, doi: 10.1073/pnas.2007560117 Bartlett, S., Li, J., Gu, L., et al. 2022, Nature Astronomy, 6, 387, doi: 10.1038/s41550-021-01559-x Benner, S. A. 2010, Astrobiology, 10, 1021, doi: 10.1089/ast.2010.0524 Bich, L., & Green, S. 2018, Synthese, 195, 3919, doi: 10.1007/s11229-017-1397-9 Bixel, A., & Apai, D. 2021, The Astronomical Journal, 161, 228, doi: 10.3847/1538-3881/abe042 Carroll-Nellenback, J., Frank, A., Wright, J., & Scharf, C. 2019, The Astronomical Journal, 158, 117, doi: 10.3847/1538-3881/ab31a3 Catling, D. C., Krissansen-Totton, J., Kiang, N. Y., et al. 2018, Astrobiology, 18, 709, doi: 10.1089/ast.2017.1737 Checlair, J. H., Villanueva, G. L., Hayworth, B. P. C., et al. 2021, The Astronomical Journal, 161, 150, doi: 10.3847/1538-3881/abdb36 Cleaves, H. J., Hystad, G., Prabhu, A., et al. 2023, Proceedings of the National Academy of Sciences, 120, e2307149120, doi: 10.1073/pnas.2307149120 Cleland, C. E. 2012, Synthese, 185, 125, doi: 10.1007/s11229-011-9879-7 Cleland, C. E., & Chyba, C. F. 2002, Origins of Life and Evolution of the Biosphere, 32, 387, doi: 10.1023/A:1020503324273 Cockell, C. S. 2022, in New Frontiers in Astrobiology (Elsevier), 1–17, doi: 10.1016/B978-0-12-824162-2.00009-9 Gobat, R. 2021, The Astrophysical Journal, 16 Green, J., Hoehler, T., Neveu, M., et al. 2021, Nature, 598, 575, doi: 10.1038/s41586-021-03804-9 Grimaldi, C., Lingam, M., & Balbi, A. 2021, The Astronomical Journal, 162, 23, doi: 10.3847/1538-3881/abfe61 Hahsler, M., Piekenbrock, M., & Doran, D. 2019, Journal of Statistical Software, 91, 1, doi: 10.18637/jss.v091.i01 Harman, C. E., & Domagal-Goldman, S. 2018, in Handbook of Exoplanets, ed. H. J. Deeg & J. A. Belmonte (Cham: Springer International Publishing), 1–22, doi: 10.1007/978-3-319-30648-3 71-1 Janin, E. 2021, Astronomy & Geophysics, 62 Kim, H., Smith, H. B., Mathis, C., Raymond, J., & Walker, S. I. 2019, Science Advances, 5, eaau0149, doi: 10.1126/sciadv.aau0149 Kinney, D., & Kempes, C. 2022, Biology & Philosophy, 37, 22, doi: 10.1007/s10539-022-09859-w Kovacevic, A. B. 2022, arXiv:2202.07347 [astro-ph, q-bio]. http://arxiv.org/abs/2202.07347 Lenardic, A., Seales, J., & Covington, A. 2022, International Journal of Astrobiology, 1, doi: 10.1017/S1473550422000222 Lenardic, A., Seales, J., Moore, W. B., & Jellinek, A. M. 2023, Nature Astronomy, 1, doi: 10.1038/s41550-023-02031-8 Lin, H. W., & Loeb, A. 2015, The Astrophysical Journal, 810, L3, doi: 10.1088/2041-8205/810/1/L3 Lingam, M., Grimaldi, C., & Balbi, A. 2021, Monthly Notices of the Royal Astronomical Society, 509, 4365, doi: 10.1093/mnras/stab3108 Lynas, M., Houlton, B. Z., & Perry, S. 2021, Environmental Research Letters, 16, 114005, doi: 10.1088/1748-9326/ac2966 Mariscal, C., & Doolittle, W. F. 2020, Synthese, 197, 2975, doi: 10.1007/s11229-018-1852-2 Marshall, S. M., Mathis, C., Carrick, E., et al. 2021, Nature Communications, 12, 3033, doi: 10.1038/s41467-021-23258-x Mix, L. J. 2015, Astrobiology, 15, 15, doi: 10.1089/ast.2014.1191 Moore, W. B., Lenardic, A., Jellinek, A. M., et al. 2017, Nature Astronomy, 1, 1, doi: 10.1038/s41550-017-0043 Olejarz, J., Iwasa, Y., Knoll, A. H., & Nowak, M. A. 2021, Nature Communications, 12, 3985, doi: 10.1038/s41467-021-23286-7 Pacetti, E., Turrini, D., Schisano, E., et al. 2022, The Astrophysical Journal, 937, 36, doi: 10.3847/1538-4357/ac8b11 Rideout, J. R., Caporaso, G., Bolyen, E., et al. 2023, biocore/scikit-bio: scikit-bio 0.5.9: Maintenance release, Zenodo, doi: 10.5281/zenodo.8209901 Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. 2011, in 2011 31st International Conference on Distributed Computing Systems Workshops (Minneapolis, MN, USA: IEEE), 166–171, doi: 10.1109/ICDCSW.2011.20 Schwieterman, E. W., Meadows, V. S., Domagal-Goldman, S. D., et al. 2016, The Astrophysical Journal, 819, L13, doi: 10.3847/2041-8205/819/1/L13 Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., et al. 2018, Astrobiology, 18, 663, doi: 10.1089/ast.2017.1729 Smith, H. B., & Mathis, C. 2023, BioEssays, 2300050, doi: 10.1002/bies.202300050 Smith, H. H., Hyde, A. S., Simkus, D. N., et al. 2021, Life, 11, 498, doi: 10.3390/life11060498 Sol´e, R. V., & Munteanu, A. 2004, Europhysics Letters (EPL), 68, 170, doi: 10.1209/epl/i2004-10241-3 Tasker, E., Tan, J., Heng, K., et al. 2017, Nature Astronomy, 1, 0042, doi: 10.1038/s41550-017-0042 Tasker, E., Unterborn, C., Laneuville, M., et al., eds. 2020, Planetary diversity: rocky planet processes and their observational signatures, AAS-IOP astronomy (Bristol, UK: IOP Publishing) The scikit-bio development team. 2020, scikit-bio: A bioinformatics library for data scientists, students, and developers. http://scikit-bio.org Totani, T. 2023, International Journal of Astrobiology, 22, 347, doi: 10.1017/S147355042300006X Vickers, P., Cowie, C., Dick, S. J., et al. 2023, Astrobiology, ast.2022.0084, doi: 10.1089/ast.2022.0084 Walker, S. I., Bains, W., Cronin, L., et al. 2018, Astrobiology, 18, 779, doi: 10.1089/ast.2017.1738 Wong, M. L., Prabhu, A., Williams, J., Morrison, S. M., & Hazen, R. M. 2023, Journal of Geophysical Research: Planets, 128, e2022JE007658, doi: 10.1029/2022JE007658 Wright, J. T., Mullan, B., Sigurdsson, S., & Povich, M. S. 2014, The Astrophysical Journal, 792, 26, doi: 10.1088/0004-637X/792/1/26 Authors: (1) Harrison B. Smith, Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan, and Blue Marble Space Institute of Science, Seattle, Washington, USA (hbs@elsi.jp); (2) Lana Sinapayen, Sony Computer Science Laboratories, Kyoto, Japan and National Institute for Basic Biology, Okazaki, Japan (lana.sinapayen@gmail.com). This paper is available on arxiv under CC BY-NC-ND 4.0 Deed license. Table of Links Abstract and 1. Introduction Abstract and 1. Introduction 2. Methods 2.1. Modeling Panspermia and Terraformation 2.1. Modeling Panspermia and Terraformation 2.2. Identifying the Presence of Terraformed Planets and 2.3. Software and Availability 2.2. Identifying the Presence of Terraformed Planets and 2.3. Software and Availability 3. Results 3.1. Panspermia can increase the correlation between planets’ compositions and positions 3.1. Panspermia can increase the correlation between planets’ compositions and positions 3.2. Likely terraformed planets can be identified from clustering 3.2. Likely terraformed planets can be identified from clustering 4. Summary and Discussion 4. Summary and Discussion 5. Acknowledgements and References 5. Acknowledgements and References APPENDIX APPENDIX A. Appendix A. Appendix 5. ACKNOWLEDGEMENTS The authors would like to thank Estelle Janin and Cole Mathis for encouraging and productive conversations, and for feedback on the manuscript. REFERENCES Affholder, A., Guyot, F., Sauterey, B., Ferri`ere, R., & Mazevet, S. 2021, Nature Astronomy, doi: 10.1038/s41550-021-01372-6 Balbi, A., & Grimaldi, C. 2020, Proceedings of the National Academy of Sciences, 117, 21031, doi: 10.1073/pnas.2007560117 Bartlett, S., Li, J., Gu, L., et al. 2022, Nature Astronomy, 6, 387, doi: 10.1038/s41550-021-01559-x Benner, S. A. 2010, Astrobiology, 10, 1021, doi: 10.1089/ast.2010.0524 Bich, L., & Green, S. 2018, Synthese, 195, 3919, doi: 10.1007/s11229-017-1397-9 Bixel, A., & Apai, D. 2021, The Astronomical Journal, 161, 228, doi: 10.3847/1538-3881/abe042 Carroll-Nellenback, J., Frank, A., Wright, J., & Scharf, C. 2019, The Astronomical Journal, 158, 117, doi: 10.3847/1538-3881/ab31a3 Catling, D. C., Krissansen-Totton, J., Kiang, N. Y., et al. 2018, Astrobiology, 18, 709, doi: 10.1089/ast.2017.1737 Checlair, J. H., Villanueva, G. L., Hayworth, B. P. C., et al. 2021, The Astronomical Journal, 161, 150, doi: 10.3847/1538-3881/abdb36 Cleaves, H. J., Hystad, G., Prabhu, A., et al. 2023, Proceedings of the National Academy of Sciences, 120, e2307149120, doi: 10.1073/pnas.2307149120 Cleland, C. E. 2012, Synthese, 185, 125, doi: 10.1007/s11229-011-9879-7 Cleland, C. E., & Chyba, C. F. 2002, Origins of Life and Evolution of the Biosphere, 32, 387, doi: 10.1023/A:1020503324273 Cockell, C. S. 2022, in New Frontiers in Astrobiology (Elsevier), 1–17, doi: 10.1016/B978-0-12-824162-2.00009-9 Gobat, R. 2021, The Astrophysical Journal, 16 Green, J., Hoehler, T., Neveu, M., et al. 2021, Nature, 598, 575, doi: 10.1038/s41586-021-03804-9 Grimaldi, C., Lingam, M., & Balbi, A. 2021, The Astronomical Journal, 162, 23, doi: 10.3847/1538-3881/abfe61 Hahsler, M., Piekenbrock, M., & Doran, D. 2019, Journal of Statistical Software, 91, 1, doi: 10.18637/jss.v091.i01 Harman, C. E., & Domagal-Goldman, S. 2018, in Handbook of Exoplanets, ed. H. J. Deeg & J. A. Belmonte (Cham: Springer International Publishing), 1–22, doi: 10.1007/978-3-319-30648-3 71-1 Janin, E. 2021, Astronomy & Geophysics, 62 Kim, H., Smith, H. B., Mathis, C., Raymond, J., & Walker, S. I. 2019, Science Advances, 5, eaau0149, doi: 10.1126/sciadv.aau0149 Kinney, D., & Kempes, C. 2022, Biology & Philosophy, 37, 22, doi: 10.1007/s10539-022-09859-w Kovacevic, A. B. 2022, arXiv:2202.07347 [astro-ph, q-bio]. http://arxiv.org/abs/2202.07347 Lenardic, A., Seales, J., & Covington, A. 2022, International Journal of Astrobiology, 1, doi: 10.1017/S1473550422000222 Lenardic, A., Seales, J., Moore, W. B., & Jellinek, A. M. 2023, Nature Astronomy, 1, doi: 10.1038/s41550-023-02031-8 Lin, H. W., & Loeb, A. 2015, The Astrophysical Journal, 810, L3, doi: 10.1088/2041-8205/810/1/L3 Lingam, M., Grimaldi, C., & Balbi, A. 2021, Monthly Notices of the Royal Astronomical Society, 509, 4365, doi: 10.1093/mnras/stab3108 Lynas, M., Houlton, B. Z., & Perry, S. 2021, Environmental Research Letters, 16, 114005, doi: 10.1088/1748-9326/ac2966 Mariscal, C., & Doolittle, W. F. 2020, Synthese, 197, 2975, doi: 10.1007/s11229-018-1852-2 Marshall, S. M., Mathis, C., Carrick, E., et al. 2021, Nature Communications, 12, 3033, doi: 10.1038/s41467-021-23258-x Mix, L. J. 2015, Astrobiology, 15, 15, doi: 10.1089/ast.2014.1191 Moore, W. B., Lenardic, A., Jellinek, A. M., et al. 2017, Nature Astronomy, 1, 1, doi: 10.1038/s41550-017-0043 Olejarz, J., Iwasa, Y., Knoll, A. H., & Nowak, M. A. 2021, Nature Communications, 12, 3985, doi: 10.1038/s41467-021-23286-7 Pacetti, E., Turrini, D., Schisano, E., et al. 2022, The Astrophysical Journal, 937, 36, doi: 10.3847/1538-4357/ac8b11 Rideout, J. R., Caporaso, G., Bolyen, E., et al. 2023, biocore/scikit-bio: scikit-bio 0.5.9: Maintenance release, Zenodo, doi: 10.5281/zenodo.8209901 Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. 2011, in 2011 31st International Conference on Distributed Computing Systems Workshops (Minneapolis, MN, USA: IEEE), 166–171, doi: 10.1109/ICDCSW.2011.20 Schwieterman, E. W., Meadows, V. S., Domagal-Goldman, S. D., et al. 2016, The Astrophysical Journal, 819, L13, doi: 10.3847/2041-8205/819/1/L13 Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., et al. 2018, Astrobiology, 18, 663, doi: 10.1089/ast.2017.1729 Smith, H. B., & Mathis, C. 2023, BioEssays, 2300050, doi: 10.1002/bies.202300050 Smith, H. H., Hyde, A. S., Simkus, D. N., et al. 2021, Life, 11, 498, doi: 10.3390/life11060498 Sol´e, R. V., & Munteanu, A. 2004, Europhysics Letters (EPL), 68, 170, doi: 10.1209/epl/i2004-10241-3 Tasker, E., Tan, J., Heng, K., et al. 2017, Nature Astronomy, 1, 0042, doi: 10.1038/s41550-017-0042 Tasker, E., Unterborn, C., Laneuville, M., et al., eds. 2020, Planetary diversity: rocky planet processes and their observational signatures, AAS-IOP astronomy (Bristol, UK: IOP Publishing) The scikit-bio development team. 2020, scikit-bio: A bioinformatics library for data scientists, students, and developers. http://scikit-bio.org Totani, T. 2023, International Journal of Astrobiology, 22, 347, doi: 10.1017/S147355042300006X Vickers, P., Cowie, C., Dick, S. J., et al. 2023, Astrobiology, ast.2022.0084, doi: 10.1089/ast.2022.0084 Walker, S. I., Bains, W., Cronin, L., et al. 2018, Astrobiology, 18, 779, doi: 10.1089/ast.2017.1738 Wong, M. L., Prabhu, A., Williams, J., Morrison, S. M., & Hazen, R. M. 2023, Journal of Geophysical Research: Planets, 128, e2022JE007658, doi: 10.1029/2022JE007658 Wright, J. T., Mullan, B., Sigurdsson, S., & Povich, M. S. 2014, The Astrophysical Journal, 792, 26, doi: 10.1088/0004-637X/792/1/26 Authors: (1) Harrison B. Smith, Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan, and Blue Marble Space Institute of Science, Seattle, Washington, USA (hbs@elsi.jp); (2) Lana Sinapayen, Sony Computer Science Laboratories, Kyoto, Japan and National Institute for Basic Biology, Okazaki, Japan (lana.sinapayen@gmail.com). Authors: Authors: (1) Harrison B. Smith, Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan, and Blue Marble Space Institute of Science, Seattle, Washington, USA ( hbs@elsi.jp ); hbs@elsi.jp (2) Lana Sinapayen, Sony Computer Science Laboratories, Kyoto, Japan and National Institute for Basic Biology, Okazaki, Japan ( lana.sinapayen@gmail.com ). lana.sinapayen@gmail.com This paper is available on arxiv under CC BY-NC-ND 4.0 Deed license. This paper is available on arxiv under CC BY-NC-ND 4.0 Deed license. available on arxiv