Machines That Play series has been broken into 7 parts.
This series covers the history of Artificial Intelligence and games (until Deep Blue) and focuses on machines that played chess, checkers, and backgammon. The following topics are covered: how to build chess machines, Shannon’s work on chess, Turing’s work on chess, The Turk, El Ajedrecista, MANIAC, Bernstein chess program, Samuel’s checkers, Mac Hack VI, Cray Blitz, BKG, HiTech, Chinook, Deep Thought, TD-Gammon, and Deep Blue.
This is Part 1 of the series and gives an overview of AI efforts related to games: chess, checkers, backgammon. It also asks (and attempts to answer) the following questions: What’s an ideal game? Why are we interested in artificial intelligence (AI) and games?
Before we talk about games and machines, let’s first talk about games and humans.
A game is something with rules and an objective. We “play” a game when we perform actions, constrained by these rules, in order to achieve the established objective.
We (humans) seem to need play almost as much as we need food, water, air, shelter, and tools to survive. What then, for us humans, would make a game ideal? This is a hard question to answer, but I imagine that an ideal game may have at least some of the following characteristics:
I don’t know if there is an ideal game, but, in my opinion, the following example comes pretty close to being one; it not only satisfies many of the characteristics listed earlier, but it challenges and blurs those same characteristics.
[Video clip] The condition is that you let me live for as long as I can stand against you.
Death: Well, I am a pretty skilled chess player.
Knight: But I bet you’re not as good as me.
Death: Why do you want me to play chess with me?
Knight: That’s my business.
Death: Indeed.
Knight: The condition is that you let me live for as long as I can stand against you.
Knight: If I win, you let me go.
The player chooses to play as long as he lives (or can). The stakes are too high and he cannot help but still try.
We are never playing against Death (and almost winning). Our actions, in most games, are not nearly as “meaningful” as saving the lives of other humans. Our games neither give us an opportunity to come to terms with our inescapable despair nor to radically transform (or transcend) ourselves or lives of others.
In reality there is probably no ideal game. Why do we still play then? A vague and simplistic answer is “because games are fun and/or useful”, but that doesn’t seem enough. We continue to both create and play games and we continue because games still demonstrate different combinations of characteristics stated above.
We’ve always played games. Games are one of our oldest sources of play. It’s possible that earlier humans played games to practice skills that prepared them for hunting and combat. For example, the bow and arrow was invented by the end of the Upper Paleolithic.
Archery is the skill of using bows to shoot arrows. In most prehistoric cultures, archery was an important military and hunting skill. Practicing archery (or playing to practice or improve) would have improved the archer’s probability of success. In this sense, such physical games may have been played to increase our chance of survival and success.
At a later time, humans began to settle in one place, which meant they weren’t moving around as much. This gave them some routine and physical games began to translate to board games. These games tapped into a variety of our desires. Some of the oldest games are:
Throughout history, we have created and played games to challenge our intelligence, strength, strategy, emotions, and more. In games, we come together and agree to a set of arbitrary rules. We compete and collaborate, we strategize to conquer chance and uncertainty, we set and achieve goals, we exercise imagination and experience the delight of success.
Games are hard. Games are interesting. Games are test-beds for AI.
As technology evolved, so did our games. Recent technology has provided us with new teammates as well as new opponents, in form of machines. Even though the history of games is fascinating, we’ll focus on automation, artificial intelligence (AI), and games in this series. More specifically, we’ll focus on games where AI has either learned to play just as well as us, or better. This journey will turn out to serve as a humble reminder:
No matter what the rate of improvement is for humans, once machines begin to learn, it will become hard for us to keep up with them — their learning and progress will end up being measured exponentially. And ours won’t.
Since the earliest days of computing, people wondered whether machines could match or surpass human intelligence. Artificial intelligence is about building machines that are able to perform the tasks that (we think) require “intelligence”. But earlier AI approaches and algorithms were not sufficient to tackle real-world problems because of their complex and ambiguous nature. Programming machines to play games successfully served as one way for computers to learn tactics and strategies that could later be applied to other real-life domains.
Emulate human thought process in games
Early AI researchers emphasized emulation of human thought process in games because they believed the best game-playing machines can be created by teaching them how to mimic human thought. They reasoned that if machines could tackle games successfully then they would most likely exhibit some type of intelligence.
Understand how the human mind works
Early AI researchers hoped that programming machines to play games successfully would help understand how the human mind worked, how it thought, how it solved problems, and ultimately what intelligence was. They assumed that building machines to perform tasks that required intelligence would provide a glimpse into how our own intelligence worked.
We will see that even when machines surpassed humans in games, they did not necessarily give insight into the workings of our minds. They did, however, help push progress in computer science (and hence other related fields). And later, the research helped us tackle some complex real-world problems head-on.
“Games are fun and they’re easy to measure. It’s clear who won and who lost, and you always have the human benchmark…Can you do better than a human?” Murray Campbell
Games, board games specifically, are one of the oldest branches of AI, starting with Shannon and Turing 1950. They provided a good way to measure the capacity of AI ideas because of 1) their simplicity of objective, 2) well-defined rules and 3) the huge range of possible strategies to reach the final objective. Every time AI conquered a game, it helped us tackle at least some complex real-world problems head-on.
Before we begin, let’s look at some ways to measure game complexity.
The state-space complexity of a game is the number of legal game positions reachable from the initial position of the game.
The game tree size is the total number of possible games that can be played: the number of leaf nodes in the game tree rooted at the game’s initial position.
The branching factor is the number of children at each node. For example, chess, suppose that a “node” is considered to be a legal position, then the average branching factor is estimated to be about 35. This means that, on average, a player has about 35 legal moves available at each turn. By comparison, the average branching factor for the game Go is 250!
Optimal status: it is not possible to perform better (some of these entries were solved by humans)
Super-human: performs better than all humans
Now, let’s talk about the machines.
The blog series will cover the following topics. Links to images are in original blogs.
The focus of the series is on some of the “firsts” in AI and games (and sometimes some of the predecessors of those programs), not on including *all* or *as many as possible* game programs.
How do we usually play this game? We do the following:
From this perspective, almost all chess computers must deal with these fundamental steps. And in doing that, a chess computer would have to address the following key problems:
There were two main philosophical approaches to developing chess computers: emulation vs. engineering — should computers emulate human knowledge and decision-making or should computers improve search via brute force? Those focusing on the first approach would build programs that had a lot of chess knowledge and a relatively smaller focus on search. Those focusing on the engineering approach would focus on computational power, by using special-purpose hardware, and search innovations. We’ll see that the best chess computers used the second approach, but even they ended up using a lot of chess knowledge and sophisticated evaluation heuristics.
From 1940s to early 1950s, early pioneers focused on building machines that would play chess much like humans did, so early chess progress relied heavily on chess heuristics (rules of thumb) to choose the best moves. They emphasized emulation of human chess thought process because they believed teaching a machine how to mimic human thought would produce the best chess machines.
Computing power was limited in the 1950s, so machines could only play at a very basic level. This is the period when researchers developed the fundamental techniques for evaluating chess positions and for searching possible moves (and opponent’s counter-moves). These ideas are still in use today.
Game: chess. Years: 1948–1953
In 1953, Alan Turing published an article on his chess program (Digital Computers Applied to Games) in the book Faster than Thought by B. Bowden. Shannon had not spoken about any particular program in his paper. It was Turing who wrote the first chess program. And he wrote it before computers even existed! He knew computers were coming and once they were powerful enough, they would be able to play chess. In 2012, Garry Kasparov played against Turochamp and defeated it in just 16 moves. Kasparov said (video), “I suppose you might call it primitive, but I would compare it to an early car — you might laugh at them but it is still an incredible achievement…
[Turing] wrote algorithms without having a computer — many young scientists would never believe that was possible. It was an outstanding accomplishment.”
The Bernstein Chess Program used Shannon Type B (selective search) strategy.
By the end of the 1960s, computer chess programs were good enough to occasionally beat against club-level or amateur players.
In 1970s and1980s, the emphasis was on hardware speed. In the 1950s and 1960s, early pioneers had focused on chess heuristics (rules of thumb) to choose the best next moves. The programs in 1970s and 1980s also used some chess heuristics, but there was a much stronger focus on software improvements as well as use of faster and more specialized hardware. Customized hardware and software allowed programs to conduct much deeper searches of game trees (example: involving millions of chess positions), something humans did not (because they could not) do.
Game: Checkers. Years: (1989–1996)
After Samuel’s work on checkers, there was a false impression that checkers was a “solved” game. As a result, researchers moved on to chess and mostly ignored checkers until Jonathan Schaeffer began working on Chinook in 1989. Schaeffer’s goal was to develop a program capable of defeating the best checkers player. The best player was Marion Tinsley. During a match, Chinook won a game against Tinsley, to which Schaeffer responded,
“We’re still members of the human race and Chinook defeating Tinsley in a single game means that it will only be a matter of time before computers will be supreme in checkers, and eventually in other games like chess.”
Read more to see how Chinook vs. Tinsley played out.
In the 1990s, chess programs began challenging International Chess masters and later Grandmasters. A specialized chess machine, named Deep Blue, would end up beating Garry Kasparov, the best human chess player. We also saw successful applications of reinforcement learning (something AlphaGo would do years later).
Game: Chess. Years: 1996–1997
This one is long (and super interesting). Definitely read it.
Deep Blue was only a two-week old baby when it faced Garry Kasparov in 1996. Hsu, one of its creators said, “Would it be the baby Hercules that strangled the two serpents send by the Goddess Hera? Or were we sending a helpless baby up as a tribute to placate the sea monster Cetus, but without the aid of Perseus? We were afraid it would be the latter.” The first game it ever played against Kasparov, it won — prompting Kasparov to question himself and asking, “…what if this thing is invincible?” It wouldn’t be invincible and Kasparov would beat it 4–2. This match was much closer than most people think (Read more).
After the match Kasparov said (about Deep Blue),
“I could feel — I could smell — a new kind of intelligence across the table.”
“I was not in the mood of playing at all..I’m a human being. When I see something that is well beyond my understanding, I’m afraid.’’
Read more (Deep Blue)…
People believed Kasparov was still a better player, but his emotions got in the way. Either way, one of the biggest takeaways from this match was that we had collectively underestimated both the physiological and psychological aspects of the match.
Our emotions, fears, desires, and doubts had a way of getting the best of us…And this is a uniquely human problem, one our machine opponents do not worry about.
It seems right to end with Garry Kasparov’s TED talk and his view on the experience.
“What I learned from my own experience is that we must face our fears if we want to get the most out of our technology, and we must conquer those fears if we want to get the best out of our humanity.
While licking my wounds, I got a lot of inspiration from my battles against Deep Blue. As the old Russian saying goes, if you can’t beat them, join them. Then I thought, what if I could play with a computer — together with a computer at my side, combining our strengths, human intuition plus machine’s calculation, human strategy, machine tactics, human experience, machine’s memory. Could it be the perfect game ever played? But unlike in the past, when machines replaced farm animals, manual labor, now they are coming after people with college degrees and political influence. And as someone who fought machines and lost, I am here to tell you this is excellent, excellent news. Eventually, every profession will have to feel these pressures or else it will mean humanity has ceased to make progress. We don’t get to choose when and where technological progress stops.
We cannot slow down. In fact, we have to speed up. Our technology excels at removing difficulties and uncertainties from our lives, and so we must seek out ever more difficult, ever more uncertain challenges. Machines have calculations. We have understanding. Machines have instructions. We have purpose. Machines have objectivity. We have passion. We should not worry about what our machines can do today. Instead, we should worry about what they still cannot do today, because we will need the help of the new, intelligent machines to turn our grandest dreams into reality. And if we fail, if we fail, it’s not because our machines are too intelligent, or not intelligent enough. If we fail, it’s because we grew complacent and limited our ambitions. Our humanity is not defined by any skill, like swinging a hammer or even playing chess.There’s one thing only a human can do. That’s dream. So let us dream big.”
https://www.youtube.com/watch?v=NP8xt8o4_5Q&feature=emb_imp_woyt
So let us dream big.