paint-brush
A SHED FOR YOUR BICYCLEby@archibaldwilliams
110 reads

A SHED FOR YOUR BICYCLE

by Archibald Williams October 21st, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

The problem, how to house one or more cycles, often gives trouble to the occupiers of small premises. The hall-way, which in many cases has to serve as stable, is sadly obstructed by the handles of a machine; and if one is kept there, the reason generally is that no other storage is available. If accommodation is needed permanently for two or three cycles belonging to the house, and occasionally for the machine of a visitor, and if room is obtainable in a backyard or garden in direct communication with the road, the question of constructing a really durable and practical cycle shed is well worth consideration. I say constructing, because, in the first place, a bought shed costing the same money would probably not be of such good quality as a home-made one; and secondly, because the actual construction, while not offering any serious difficulty, will afford a useful lesson in carpentry. [Illustration: FIG. 16.—Cycle shed completed.] Cycle sheds are of many kinds, but owing to the limitations of space it is necessary to confine attention to one particular design, which specifies a shed composed of sections quickly put together or taken apart—portability being an important feature of “tenants’ fixtures”—and enables fullest advantage to be taken of the storage room. As will be seen from the scale drawings illustrating this chapter, the doors extend right across the front, and when they are open the whole of the interior is easily accessible. The fact that the cycles can be put in sideways is a great convenience, as the standing of the machines head to tail alternately economizes room considerably.
featured image - A SHED FOR YOUR BICYCLE
Archibald Williams  HackerNoon profile picture

Things To Make by Archibald Williams is part of the HackerNoon Books Series. You can jump to any chapter in this book here. A SHED FOR YOUR BICYCLE.

VII. A SHED FOR YOUR BICYCLE.

The problem, how to house one or more cycles, often gives trouble to the occupiers of small premises. The hall-way, which in many cases has to serve as stable, is sadly obstructed by the handles of a machine; and if one is kept there, the reason generally is that no other storage is available.


If accommodation is needed permanently for two or three cycles belonging to the house, and occasionally for the machine of a visitor, and if room is obtainable in a backyard or garden in direct communication with the road, the question of constructing a really durable and practical cycle shed is well worth consideration. I say constructing, because, in the first place, a bought shed costing the same money would probably not be of such good quality as a home-made one; and secondly, because the actual construction, while not offering any serious difficulty, will afford a useful lesson in carpentry.


[Illustration: FIG. 16.—Cycle shed completed.]


Cycle sheds are of many kinds, but owing to the limitations of space it is necessary to confine attention to one particular design, which specifies a shed composed of sections quickly put together or taken apart—portability being an important feature of “tenants’ fixtures”—and enables fullest advantage to be taken of the storage room. As will be seen from the scale drawings illustrating this chapter, the doors extend right across the front, and when they are open the whole of the interior is easily accessible. The fact that the cycles can be put in sideways is a great convenience, as the standing of the machines head to tail alternately economizes room considerably.


[Illustration: FIG. 16.—Plan of corner joints of cycle shed.]


I ought to mention before going further that the shed to be described is very similar, as regards design and dimensions, to one in a back issue of Cycling. By the courtesy of the proprietors of the journal I have been permitted to adapt the description there given.[1]


[Footnote 1: By Mr. Hubert Burgess. ]


Dimensions and General Arrangements.—The shed is 8 feet long over all, 5 feet 6 inches high in front, 5 feet high at the back, 3 feet deep over all, under the roof, which projects 3 inches fore and aft, and 2 inches at each end. It consists of seven parts: two sides, roof, back, front frame and doors, and a bottom in two sections.


The reader should examine the diagrams (Figs. 16 to 24) to get a clear understanding of the disposal of the parts at the corners. Fig. 16 makes it plain that the frames of the back and front overlap the frames of the sides, to which they are bolted; and that the covering of the back overlaps the covering of the sides, which in turn overlaps the front frame.


All corner joints are halved. In order to allow the doors to lie flush with the front of the doorframe uprights, the last must project the thickness of the door boards beyond the frame longitudinals; and to bring the front uprights of the sides up against the uprights of the door frame, the longitudinals are notched, as shown (Fig. 16), to the depth of the set-back for the doors.


Materials.—The question of cost and the question of materials cannot be separated. A shed even of the dimensions given consumes a lot of wood, and the last, that it may withstand our variable and treacherous climate for a good number of years, should, as regards those parts directly exposed to the weather, be of good quality. Yellow deal may be selected for the boards; pitch pine is better, but it costs considerably more. For the frames and non-exposed parts generally ordinary white deal will suffice.

[Illustration: FIG. 17.-Types of match boarding: (a) square joint; (b) double.-V; (c) single-V.]


The scale drawings are based on the assumption that matching of one of the forms shown in Fig. 17, and measuring 4 inches (actual) across, exclusive of the tongue, and 5/8 inch (actual) thick, is used.


As advised in the case of the carpenter’s bench, (p. 15) the prospective constructor should let the wood merchant have the specifications, so that he may provide the material in the most economical lengths. The following is a rough estimate of the wood required, allowing a sufficient margin for waste:

4-1/2 (over tongue) by 5/8 inch (actual) yellow match boarding for sides, roof, back, and doors:


1-1/2 squares = 150 sq. feet. = 450 feet run. White 4-1/2 by 3/4 inch square-shouldered flooring: 1/4 square = 25 sq. feet. = 75 feet run. 3 by 1-1/2 inch battens = 88 feet run. 4 by 1-1/2 inch battens = 26 feet run. 3 by 2 inch battens = 27 feet run. 5 by 1-1/2 inch battens = 8 feet run. 2 by 1-1/2 inch battens = 21 feet run.


There will also be required:
Twelve 6-inch bolts and nuts.
Two pairs 18-inch cross-garnet hinges.
Two door bolts.
One lock (a good one).
Four yards of roofing felt.
Two gallons of stoprot.
Three lbs. wire-nails
A few dozen 3-inch and I-1/2-inch screws.

The total cost of the materials will come to about 2 pounds, 2s.

CONSTRUCTION.

The scale drawings are so complete as to dimensions that, assuming the materials to be of the sizes specified, they may be followed implicitly. It is, of course, easy to modify the design to suit any slight differences in dimensions; and to avoid mistakes all the stuff should be gauged carefully beforehand.


[Illustration: FIG. 18.-Side of cycle shed.]


The Sides.—When laying out the frames for these it is necessary to bear in mind that the front upright is somewhat less than 5 feet 6 inches long, and the back upright rather more than 5 feet, owing to the slope of the roof, and to the fact that they are set in 2 inches from the back and front. To get the lengths and angle of the half-joints right, lay the verticals, which should be 5 feet 6 inches and 5 feet 1 inch long before trimming, on the floor, at right angles to the bottom of the frame (2 feet 7-3/4 inches long) and quite parallel to one another. (We will assume the half-joints to have been made at the bottom.) The batten for the top is laid across the ends of the verticals, its top edge in line with a 5-foot 6-inch mark at a point 2 inches beyond the front vertical, and with a 5-foot mark 2 inches beyond the back vertical, the distances being measured perpendicularly from the bottom of the frames produced. The lines for the joints can then be marked, and the joints cut. The notches for the roof stays should not be cut till the roof is being fitted.


[Illustration: FIG. 19.—Boards at top of side, fixed ready for cutting off.]


Use the side frame first made as template for the other.


The shelves are notched at the ends, so that their back faces shall be flush with the board side of the frame.


Fix the corners with the screws, and plane off the projecting angles of the uprights.


When putting on the boards, start at the back of the frame. Plane down the groove edge of the first board until the groove is out of the board, and apply the board with 1-1/2 inches projecting beyond the frame. Leave a little spare at each end of every board, and when the side is covered run a tenon-saw across both ends of all the boards close to the frame, and finish up with the plane. This is quicker and makes a neater job than cutting each board to size separately.


[Illustration: FIG. 20.-Back of cycle shed.]


The Back (Fig. 20).—When laying out the frame for this, remember that there is a bevel to be allowed for along the top, and that the height of the frame at the front must be that of the back of a side frame. (See Fig. 21.) The boards should be cut off to the same slope.


Twenty-four boards should exactly cover the back. Cut the tongue neatly off that last fixed, and glue it into the groove of the first board.


The Front.—The frame requires careful making. For details of corner joints see Fig. 16. The 3-inch faces of the top and bottom bars are vertical. The upper side of the top bar is planed off to the angle of the slope. (Fig. 23.)


[Illustration: FIG. 21. Detail of eaves.]


The Doors (Fig. 22).—These are the most difficult parts to construct, as the braces which prevent the front edges dropping must be carefully fitted in order to do their work properly.


The eleven outside boards of each door are held together by two 4-inch ledges 6 inches away from the ends, and one 5-inch central ledge. Allow a little “spare” on the boards for truing up. Boards and ledges having been nailed together, lay a piece of 4 by 1-1/2 inch batten across the ledges on the line which the braces will take, and mark the ledges accordingly. Next mark on the batten the ends of the braces. These project half an inch into the ledges, and terminate on the thrust side in a nose an inch long, square to the edge of the brace. The obtuse angle is flush with the edge of the ledge. Cut out the braces, lay them in position on the ledges, and scratch round the ends. Chisel out the notches very carefully, working just inside the lines to ensure the brace making a tight fit. If there is any slackness at either end, the brace obviously cannot carry the weight of the door until the door has settled slightly, which is just what should be prevented. Therefore it is worth while taking extra trouble over this part of the work.


[Illustration: FIG. 22.-Doors of shed.]


Cautions.—Don’t get the nose of the brace too near the end of the ledge. Nail the boards on specially securely to the ledges near the ends of the braces.


Fitting the Doors.—The doors should now be laid on the top of the frame and secured to it by the four hinges. The long ends of these are held by screws driven through the boards into the bearers; the cross pieces are screwed to the uprights of the door frame. The doors when closed should make a good but not tight fit with one another.

PUTTING THE PARTS TOGETHER.

The two sides, front, and back are now assembled, on a level surface, for drilling the holes for the bolts which hold them together. The positions of the bolts will be gathered from the drawings. Get the parts quite square before drilling, and run the holes through as parallel to the sides as possible. If the bolts are a bit too long, pack washers between nut and wood until the nut exerts proper pressure.


Caution.—The hole must not be large enough to allow the square part just under the head to revolve, for in such a case it would be impossible to screw up the nut. Its size ought to be such as to require the head to be driven up against the wood.


[Illustration: Fig. 23 Roof attachment]


The Roof.—The boards of this are attached to a frame which fits closely inside the tops of the sides, back, and front. To get the fit of the frame correct, it must be made a bit too wide in the first instance, and then be bevelled off at the front, as shown in Fig. 23, and the reverse way at the back. The ends are notched for the stays AA, and the frame then tacked firmly, by driving nails into the sides, etc., below it, in the position which it will occupy when the roof is on, except that it projects upwards a little. Cut off twenty-five boards 3 feet 7 inches long. Omitting the end ones for the present, lay the remainder up to one another in order, their ends an equal distance from the frame, and nail to the frame. Lift off the roof, insert and secure AAAA, and nail on the end boards. Then rule parallel straight lines 3 feet 6 inches apart across all the boards from end to end of the roof, and cut along these lines. The roof is replaced after notches have been cut in the tops of the sides to take AAAA, and secured to the vertical parts by six bolts, the positions of which are shown in Fig. 24.


[Illustration:
FIG. 24.—Top of cycle shed.
FIG. 25.—Floor of shed.]

The Floor (Fig. 25).—The making of this is so simple a matter that one need only point out the need for notching the end boards to allow the floor to touch the sides and back, and the doors when closed. It should be screwed to the frames, on which it rests, in a few places.


Preserving the Wood.—All outside wood is dressed with stoprot or creosote, rubbed well into the joints of the boarding.


Felting the Roof.—The felt is cut into 4-foot lengths, and each length has its ends turned over and nailed to the underside of the roof. The strips must overlap an inch or two. When the felt is on, dress it with boiled tar, and sprinkle sand over it while the tar is still liquid.


Fitting.—The two bolts to hold one door top and bottom and the lock are now fitted, and a couple of hooks screwed into the door frame clear of the door, to sling a machine from while it is being cleaned or adjusted.


Mounting the Shed.—The shed must be raised a few inches above the ground, on bricks or other suitable supports. Don’t stand it close to a wall. Air should be able to circulate freely under and all round it.

CUTTING DOWN EXPENSE.

If the cost appears prohibitive, it may be reduced somewhat (1) by using thinner boards; (2) by reducing the height of the shed by 1 foot. A very cheap shed, but of course not comparable in quality with the one described, can be made by using odd rough boards for the outside, and covering them with roofing felt well tarred.


About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Archibald Williams (2005). Things To Make. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/14664/pg14664-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.