paint-brush
Gemini - A Family of Highly Capable Multimodal Models: Abstract and Introductionby@textmodels
942 reads
942 reads

Gemini - A Family of Highly Capable Multimodal Models: Abstract and Introduction

Too Long; Didn't Read

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks — notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.

Company Mentioned

Mention Thumbnail
featured image - Gemini - A Family of Highly Capable Multimodal Models: Abstract and Introduction
Writings, Papers and Blogs on Text Models HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors: Gemini Team, Google.

Table of Links

Abstract and Introduction

Model Architecture

Training Infrastructure

Training Dataset

Evaluation

Responsible Deployment

Discussion and Conclusion, References

Contributions and Acknowledgments

Appendix


This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks — notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.

1. Introduction

We present Gemini, a family of highly capable multimodal models developed at Google. We trained Gemini jointly across image, audio, video, and text data for the purpose of building a model with both strong generalist capabilities across modalities alongside cutting-edge understanding and reasoning performance in each respective domain.


Gemini 1.0, our first version, comes in three sizes: Ultra for highly-complex tasks, Pro for enhanced performance and deployability at scale, and Nano for on-device applications. Each size is specifically tailored to address different computational limitations and application requirements. We evaluate the performance of Gemini models on a comprehensive suite of internal and external benchmarks covering a wide range of language, coding, reasoning, and multimodal tasks.


Gemini advances state-of-the-art in large-scale language modeling (Anil et al., 2023; Brown et al., 2020; Chowdhery et al., 2023; Hoffmann et al., 2022; OpenAI, 2023a; Radford et al., 2019; Rae et al., 2021), image understanding (Alayrac et al., 2022; Chen et al., 2022; Dosovitskiy et al., 2020; OpenAI, 2023b; Reed et al., 2022; Yu et al., 2022a), audio processing (Radford et al., 2023; Zhang et al., 2023), and video understanding(Alayrac et al., 2022; Chen et al., 2023). It also builds on the work on sequence models (Sutskever et al., 2014), a long history of work in deep learning based on neural networks (LeCun et al., 2015), and machine learning distributed systems (Barham et al., 2022; Bradbury et al., 2018; Dean et al., 2012) that enable large-scale training.


Our most capable model, Gemini Ultra, achieves new state-of-the-art results in 30 of 32 benchmarks we report on, including 10 of 12 popular text and reasoning benchmarks, 9 of 9 image understanding benchmarks, 6 of 6 video understanding benchmarks, and 5 of 5 speech recognition and speech translation benchmarks. Gemini Ultra is the first model to achieve human-expert performance on MMLU (Hendrycks et al., 2021a) — a prominent benchmark testing knowledge and reasoning via a suite of exams — with a score above 90%. Beyond text, Gemini Ultra makes notable advances on challenging multimodal reasoning tasks. For example, on the recent MMMU benchmark (Yue et al., 2023), that comprises questions about images on multi-discipline tasks requiring college-level subject knowledge and deliberate reasoning, Gemini Ultra achieves a new state-of-the-art score of 62.4%, outperforming the previous best model by more than 5 percentage points. It provides a uniform performance lift for video question answering and audio understanding benchmarks.


Qualitative evaluation showcases impressive crossmodal reasoning capabilities, enabling the model to understand and reason across an input sequence of audio, images, and text natively (see Figure 5 and Table 13). Consider the educational setting depicted in Figure 1 as an example. A teacher has drawn a physics problem of a skier going down a slope, and a student has worked through a solution to it. Using Gemini’s multimodal reasoning capabilities, the model is able to understand the messy handwriting, correctly understand the problem formulation, convert both the problem and solution to mathematical typesetting, identify the specific step of reasoning where the student went wrong in solving the problem, and then give a worked through correct solution to the problem. This opens up exciting educational possibilities, and we believe the new multimodal and reasoning capabilities of Gemini models have dramatic applications across many fields.


Figure 1 | Verifying a student’s solution to a physics problem. The model is able to correctly recognize all of the handwritten content and verify the reasoning. On top of understanding the text in the image, it needs to understand the problem setup and correctly follow instructions to generate LATEX.


The reasoning capabilities of large language models show promise toward building generalist agents that can tackle more complex multi-step problems. The AlphaCode team built AlphaCode 2 (Leblond et al, 2023), a new Gemini-powered agent, that combines Gemini’s reasoning capabilities with search and tool-use to excel at solving competitive programming problems. AlphaCode 2 ranks within the top 15% of entrants on the Codeforces competitive programming platform, alarge improvement over its state-of-the-art predecessor in the top 50% (Li et al., 2022).


In tandem, we advance the frontier of efficiency with Gemini Nano, a series of small models targeting on-device deployment. These models excel in on-device tasks, such as summarization, reading comprehension, text completion tasks, and exhibit impressive capabilities in reasoning, STEM, coding, multimodal, and multilingual tasks relative to their sizes.


In the following sections, we first provide an overview of the model architecture, training infrastructure, and training dataset. We then present detailed evaluations of the Gemini model family, covering well-studied benchmarks and human-preference evaluations across text, code, image, audio and video — which include both English performance and multilingual capabilities. We also discuss our approach to responsible deployment, [2] including our process for impact assessments, developing model policies, evaluations, and mitigations of harm before deployment decisions. Finally, we discuss the broader implications of Gemini, its limitations alongside its potential applications — paving the way for a new era of research and innovation in AI.


[2] We plan to update this report with more details ahead of the general availability of the Gemini Ultra model.