paint-brush
非交换 crepant 解析的突变:准对称表示和 GIT 商 经过@eigenvector

非交换 crepant 解析的突变:准对称表示和 GIT 商

经过 Eigenvector Initialization Publication
Eigenvector Initialization Publication HackerNoon profile picture

Eigenvector Initialization Publication

@eigenvector

Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse...

2 分钟 read2024/06/09
Read on Terminal Reader
Read this story in a terminal
Print this story

太長; 讀書

本文研究了对应于超平面排列中的墙交叉点的魔法窗口在 NCCR 方面的等价性。
featured image - 非交换 crepant 解析的突变:准对称表示和 GIT 商
Eigenvector Initialization Publication HackerNoon profile picture
Eigenvector Initialization Publication

Eigenvector Initialization Publication

@eigenvector

Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse science & technological fields.

0-item

STORY’S CREDIBILITY

Academic Research Paper

Academic Research Paper

Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.

作者:

(1)原和平;

(2)平野由希。

链接表

3. 拟对称表示和GIT商

3.1.拟对称表示和魔法窗口。本节回顾了由拟对称表示产生的 GIT 商导出类别的基本性质,这些性质在 [HSa] 和 [SV1] 中得到建立。我们自由使用第 1.6 节中的符号。


image


然后它关联 GIT 商堆栈 [Xss(ℓ)/G]。


image


image


image


image


命题 3.10 ([HSa, 命题 6.2])。群胚的等价性


image


image


image


image


image


image


命题 3.13 ([HSa, 命题 6.5])。有一个等价


image


扩展命题3.10中的等价性。


image


image


image


image


(3)这由(2)可知。


以下是基本的,但为了方便读者,我们给出了证明


image


image


image


证明。如果 W 是平凡的,结果显而易见。因此,假设 W ̸= 1


image


image


image


image


image


下面的结果证明该映射是双射的。


image


image


image


image


image



L O A D I N G
. . . comments & more!

About Author

Eigenvector Initialization Publication HackerNoon profile picture
Eigenvector Initialization Publication@eigenvector
Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse science & technological fields.

標籤

这篇文章刊登在...

Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
X REMOVE AD