WATER SUPPLY OF SMALL TOWNSby@scientificamerican


tldt arrow
Read on Terminal Reader
Read this story w/o Javascript

Too Long; Didn't Read

We now describe the new waterworks lately erected for supplying the town of Cougleton, Cheshire. The population is about 12,000, and the place is a seat of the silk manufacture. After various expensive plans had been suggested, in the year 1879 a complete scheme for the supply of the town with water was devised by the then borough surveyor, Mr. Wm. Blackshaw, now borough surveyor of Stafford. These we now illustrate above by a general drawing, and a separate drawing of the tower. With respect to the mechanical arrangements, the Corporation called in Mr. W. H. Thornbery, of Birmingham, consulting engineer, to decide on the best design of those submitted, and this, with modifications made by him, was carried out under his inspection. The water, for the supply by pumping, is obtained from springs situated at the foot of Crossledge Hill, about a mile from the town. It does not at present require filtering, but space enough has been allowed for the construction of duplicate filtering beds without in any way interfering with the present appliances. These filter beds are shown in our perspective illustration, but they are not yet built or required. The waterworks are situated very near the springs, from which they are only separated by a road, under which the collecting pipes run. There are two circular collecting tanks of brickwork, two pumping wells, engine-house, boiler-house, chimney stack, and engine-driver's dwelling-house, all inclosed by a wall. On the top of Crossledge Hill is erected a circular brick water tower 35 ft. high to the underside of the service tank, which is of cast iron 30 ft. internal diameter, supported on rolled girders. The tank is capable of containing 50,000 gallons of water, and it is provided with the usual rising and service mains, overflow and washout pipes. There is an arrangement for pumping direct into the mains in case the tank should require cleaning or repairing. The pumping machinery is in duplicate, and each set consists of a horizontal condensing engine, with cylinder 18 in. diameter, stroke 30 in., fitted with Meyer's expansion gear, governor, fly-wheel 12 ft. diameter, weighing 4 tons, jet condenser with a single acting vertical air pump, situated below the engine room floor, and between the end of the cylinder and the main pump. Each main pump is 10 in. diameter, horizontal, double-acting, worked by a prolongation backward of the piston-rod. The valves and seats are of gun metal, 8½ in. diameter. The capacity is 350 gallons per minute, raised 206 ft. The air vessel is 21 in. internal diameter and 6 ft. high, and is fitted with a hand pump for renewing the supply of air if necessary. The rising main from the air vessel to the service tank is 9 in. diameter, and 307 yards long, laid up the steep slope of the hill on which the water tower is built. The boilers, two in number, are of the ordinary Cornish single-flued type, 5 ft. diameter by 18 ft. long, with flue 2 ft. 9 in. diameter, with three Galloway tubes. They were made by Messrs. Hill & Co., of Manchester. The engines and pumps were made by Mr. Albert Scragg, of Congleton, and the brick, stone, and builder's work was executed by Mr. Thomas Kirk. The waterworks were opened in the autumn of 1881, and since then have constantly afforded an abundant supply of water. There is also an independent gravitation system, also arranged by Mr. Blackshaw, for supplying an outlying part of the town. The cost of the works was exceedingly moderate, being not more than £12,000, including the water mains for distribution.
Scientific American  HackerNoon profile picture


Scientific American

Oldest US science mag (est. 1845). Features contributions from Einstein, Tesla & 150+ Nobel laureates.

Receive Stories from @scientificamerican

react to story with heart


. . . comments & more!