paint-brush
WATER SUPPLY OF SMALL TOWNSby@scientificamerican

WATER SUPPLY OF SMALL TOWNS

by Scientific American November 6th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

We now describe the new waterworks lately erected for supplying the town of Cougleton, Cheshire. The population is about 12,000, and the place is a seat of the silk manufacture. After various expensive plans had been suggested, in the year 1879 a complete scheme for the supply of the town with water was devised by the then borough surveyor, Mr. Wm. Blackshaw, now borough surveyor of Stafford. These we now illustrate above by a general drawing, and a separate drawing of the tower. With respect to the mechanical arrangements, the Corporation called in Mr. W. H. Thornbery, of Birmingham, consulting engineer, to decide on the best design of those submitted, and this, with modifications made by him, was carried out under his inspection. The water, for the supply by pumping, is obtained from springs situated at the foot of Crossledge Hill, about a mile from the town. It does not at present require filtering, but space enough has been allowed for the construction of duplicate filtering beds without in any way interfering with the present appliances. These filter beds are shown in our perspective illustration, but they are not yet built or required. The waterworks are situated very near the springs, from which they are only separated by a road, under which the collecting pipes run. There are two circular collecting tanks of brickwork, two pumping wells, engine-house, boiler-house, chimney stack, and engine-driver's dwelling-house, all inclosed by a wall. On the top of Crossledge Hill is erected a circular brick water tower 35 ft. high to the underside of the service tank, which is of cast iron 30 ft. internal diameter, supported on rolled girders. The tank is capable of containing 50,000 gallons of water, and it is provided with the usual rising and service mains, overflow and washout pipes. There is an arrangement for pumping direct into the mains in case the tank should require cleaning or repairing. The pumping machinery is in duplicate, and each set consists of a horizontal condensing engine, with cylinder 18 in. diameter, stroke 30 in., fitted with Meyer's expansion gear, governor, fly-wheel 12 ft. diameter, weighing 4 tons, jet condenser with a single acting vertical air pump, situated below the engine room floor, and between the end of the cylinder and the main pump. Each main pump is 10 in. diameter, horizontal, double-acting, worked by a prolongation backward of the piston-rod. The valves and seats are of gun metal, 8½ in. diameter. The capacity is 350 gallons per minute, raised 206 ft. The air vessel is 21 in. internal diameter and 6 ft. high, and is fitted with a hand pump for renewing the supply of air if necessary. The rising main from the air vessel to the service tank is 9 in. diameter, and 307 yards long, laid up the steep slope of the hill on which the water tower is built. The boilers, two in number, are of the ordinary Cornish single-flued type, 5 ft. diameter by 18 ft. long, with flue 2 ft. 9 in. diameter, with three Galloway tubes. They were made by Messrs. Hill & Co., of Manchester. The engines and pumps were made by Mr. Albert Scragg, of Congleton, and the brick, stone, and builder's work was executed by Mr. Thomas Kirk. The waterworks were opened in the autumn of 1881, and since then have constantly afforded an abundant supply of water. There is also an independent gravitation system, also arranged by Mr. Blackshaw, for supplying an outlying part of the town. The cost of the works was exceedingly moderate, being not more than £12,000, including the water mains for distribution.
featured image - WATER SUPPLY OF SMALL TOWNS
Scientific American  HackerNoon profile picture

Scientific American Supplement, No. 392, July 7, 1883 by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. WATER SUPPLY OF SMALL TOWNS.

WATER SUPPLY OF SMALL TOWNS.

We now describe the new waterworks lately erected for supplying the town of Cougleton, Cheshire. The population is about 12,000, and the place is a seat of the silk manufacture. After various expensive plans had been suggested, in the year 1879 a complete scheme for the supply of the town with water was devised by the then borough surveyor, Mr. Wm. Blackshaw, now borough surveyor of Stafford. These we now illustrate above by a general drawing, and a separate drawing of the tower. With respect to the mechanical arrangements, the Corporation called in Mr. W. H. Thornbery, of Birmingham, consulting engineer, to decide on the best design of those submitted, and this, with modifications made by him, was carried out under his inspection. The water, for the supply by pumping, is obtained from springs situated at the foot of Crossledge Hill, about a mile from the town. It does not at present require filtering, but space enough has been allowed for the construction of duplicate filtering beds without in any way interfering with the present appliances. These filter beds are shown in our perspective illustration, but they are not yet built or required.


WATER SUPPLY OF SMALL TOWNS--CONGLETON WATERWORKS.


The waterworks are situated very near the springs, from which they are only separated by a road, under which the collecting pipes run. There are two circular collecting tanks of brickwork, two pumping wells, engine-house, boiler-house, chimney stack, and engine-driver's dwelling-house, all inclosed by a wall. On the top of Crossledge Hill is erected a circular brick water tower 35 ft. high to the underside of the service tank, which is of cast iron 30 ft. internal diameter, supported on rolled girders. The tank is capable of containing 50,000 gallons of water, and it is provided with the usual rising and service mains, overflow and washout pipes. There is an arrangement for pumping direct into the mains in case the tank should require cleaning or repairing.


The pumping machinery is in duplicate, and each set consists of a horizontal condensing engine, with cylinder 18 in. diameter, stroke 30 in., fitted with Meyer's expansion gear, governor, fly-wheel 12 ft. diameter, weighing 4 tons, jet condenser with a single acting vertical air pump, situated below the engine room floor, and between the end of the cylinder and the main pump. Each main pump is 10 in. diameter, horizontal, double-acting, worked by a prolongation backward of the piston-rod. The valves and seats are of gun metal, 8½ in. diameter. The capacity is 350 gallons per minute, raised 206 ft. The air vessel is 21 in. internal diameter and 6 ft. high, and is fitted with a hand pump for renewing the supply of air if necessary. The rising main from the air vessel to the service tank is 9 in. diameter, and 307 yards long, laid up the steep slope of the hill on which the water tower is built. The boilers, two in number, are of the ordinary Cornish single-flued type, 5 ft. diameter by 18 ft. long, with flue 2 ft. 9 in. diameter, with three Galloway tubes. They were made by Messrs. Hill & Co., of Manchester. The engines and pumps were made by Mr. Albert Scragg, of Congleton, and the brick, stone, and builder's work was executed by Mr. Thomas Kirk. The waterworks were opened in the autumn of 1881, and since then have constantly afforded an abundant supply of water. There is also an independent gravitation system, also arranged by Mr. Blackshaw, for supplying an outlying part of the town. The cost of the works was exceedingly moderate, being not more than £12,000, including the water mains for distribution.

PROCESS FOR SOFTENING HARD WATER.

The available water of many villages and small towns is that of the chalk beds, but it is invariably very hard, and should be softened. We have received so many inquiries respecting a simple means of carrying out Clarke's water-softening process, that the following description of a set of apparatus devised for this purpose by Messrs. Law and Chatterton, MM.I.C.E., may interest many besides those who contemplate the construction of small waterworks supplied by the chalk springs.


The apparatus, as made in various sizes by Messrs. Bowes, Scott, and Read, of Broadway-chambers, Westminster, we illustrate by the accompanying engravings.


Softening hard water.--The disadvantages attending the use of hard water either for drinking purposes, steam generation, lavatory purposes, and for many manufacturing purposes, are well known, but as there are several methods of softening waters which are hard in different degrees by different substances, we may be pardoned if we here reproduce, for the convenience of some of our readers, a few passages from the sixth report of the River Pollution Commission, 1874, pages 21 and 201-16, which give some very valuable information on the relative merits of hard and soft waters in domestic and trade uses. "Some of the mineral substances which occur in solution in potable waters communicate to the latter the quality of hardness. Hard water decomposes soap, and cannot be efficiently used for washing. The chief hardening ingredients are salts of lime and magnesia. In the decomposition of soap these salts form curdy and insoluble compounds containing the fatty acids of the soap and the lime and magnesia of the salts. So long as this decomposition goes on the soap is useless as a detergent, and it is only after all the lime and magnesia salts have been decomposed at the expense of the soap, that the latter begins to exert a useful effect. As soon as this is the case, however, the slightest further addition of soap produces a lather when the water is agitated, but this lather is again destroyed by the addition of a further quantity of hard water. Thus the addition of hard water to a solution of soap, or the converse of this operation, causes the production of the insoluble curdy matter before mentioned. These facts render intelligible the process of washing the skin with soap and hard water. The skin is first wetted with the water and then soap is applied; the latter decomposes the hardening salts contained in the small quantity of water with which the skin is covered, and there is then formed a strong solution of soap which penetrates into the pores, and now the lather and impurities which it has imbibed require to be removed from the skin by wiping the lather off with a towel or by rinsing it away with water. In the former case the pores of the skin are left filled with soap solution; in the latter they become clogged with the greasy, curdy matter which results from the action of the hard water upon the soap solution which had previously gained possession of the pores of the cuticle. As the latter process of removing the lather is the one universally adopted, the operation of washing with soap and hard water is analogous to that used by the dyer and calico printer for fixing pigments in calico, woolen, or silk tissues. The pores of the skin are filled with insoluble greasy and curdy salts of the fatty acids contained in the soap, and it is only because the insoluble pigment produced is white, or nearly so, that so repulsive an operation is tolerated. To those, however, who have been accustomed to wash in soft water, the abnormal condition of skin thus induced is for a long time extremely unpleasant.


Of the hardening salts present in potable water, carbonate of lime is the one most generally met with, and to obtain a numerical expression for this quality of hardness a sample of water containing 1 lb. of carbonate of lime, or its equivalent of other hardening salts, in 100,000 lb.--10,000 gallons--is said to have 1° of hardness. Each degree of hardness indicates the destruction and waste of 12 lb. of the best hard soap by 10,000 gallons of water when used for washing. Hard water frequently becomes softer after it has been boiled for some time. When this is the case, a portion at least of the original hardening effect is due to the bicarbonate of lime and magnesia. These salts are decomposed by boiling into free carbonic acid, which escapes as gas, leaving carbonates of lime and magnesia; the latter being nearly insoluble in water, ceases to exert more than a very slight hardening effect, and produces a precipitate. As the hardness resulting from the carbonates of lime and magnesia is thus removable by boiling the water, it is designated temporary hardness, while the hardening effect which is due chiefly to the sulphates of lime and magnesia, and cannot be got rid of by boiling, is termed permanent hardness. The total hardness of water is therefore commonly made up of temporary and permanent hardness. A constant supply of hot water is now almost a necessity in every household, but great difficulties are thrown in the way of its attainment by the supply of hard water to towns forming thick calcareous crusts in the heating apparatus.


Waters with much temporary hardness are most objectionable in this respect, and the evil is so great where the heating is effected in a coil of pipe, as practically to prevent, in towns with hard water, the use of this most convenient method of heating water. The property of being softened by boiling which temporarily hard water possesses is not of much domestic use, for water is, as a rule, either not raised to a sufficiently high temperature or not kept at it for a long enough time. Seeing then the disadvantages attendant on the use of hard water, it remains to be considered how best to soften it. Four processes are known to the arts. They are: Distillation, carbonate of soda, boiling, lime. Of these processes the first and second are the most effective, but owing to their expense are not applicable on a large scale. The third and fourth processes are efficient only with certain classes of water, rendered hard by the presence of the bicarbonate of lime, magnesia, or iron. The fourth is, however, a very cheap process, and is easily applicable to the vast volumes of water supplied to large cities, provided the hardening ingredients are of the character described.


Softening by distillation.--By evaporation, water is completely separated from all fixed saline matters, and consequently from all hardening matters. Distilled water, however, has a vapid and unpleasant taste, due partly to deficient aeration and partly to the presence of traces of volatile organic matter; and though filtration through animal charcoal will remove this, and the aeration can begin chemically, the process is too expensive, except in certain cases, as on board ship, or at military or naval stations where no potable water exists.


Softening by carbonate of soda.--The hardness of water, as already explained, being principally due to the presence in solution of bicarbonates and sulphates of lime and magnesia, can be reduced by addition of carbonate of soda, which decomposes these salts slowly in cold water but quickly in hot, forming insoluble compounds of lime and magnesia, which are slowly precipitated as a fine mud, leaving the water charged, however, with a solution of bicarbonate and sulphate of soda. This process, on account of expense, is only applicable on a small scale to the water for laundry purposes, as the water acquires an unpleasant taste from the presence of the soda salts. For laundry purposes it is, however, valuable, as it effects a great saving of soap.


The softening of water by boiling.--That portion of the hardness of water due to the presence of bicarbonate of lime, magnesia, or iron, is corrected by boiling the water for half an hour. During ebullition the bicarbonates, which are soluble, become carbonates, which are insoluble, giving off their carbonic acid as gas, rendering--by the precipitate produced, but not allowed in a boiler time to settle--the water muddy, but incapable of decomposing soap. To raise the temperature of 1,000 gallons of water to the boiling point and to maintain it for half an hour requires the consumption of about 2½ cwt. of coal, or by the wasteful appliances found in households, probably three times that amount. Softened by boiling, then, 1,000 gallons of water would cost about 7s. 6d., while the cost of softening the same amount by soap is 9s., at £2 6s. 6d. per cwt.


The softening of water by lime.--The economy which carbonate of soda exhibits in comparison with soap as a softening material is far surpassed by the use of lime. Lime costs about 8d. per cwt., and this weight of lime will soften the same volume of water as would require the use of 20¼ cwt. of soap. From the above it is evident--so soon as it is conceded that there is an advantage in using soft water--that the lime process is by far the most economical. Besides the chemical action affecting the hardness, it has another most important mechanical action, in consequence of the weight of each particle composing the precipitate produced by it. These particles during subsidence become attached to the almost microscopical organic impurities present in all river water, and drag them down to the bottom of the settling tank, whereby the water is rendered, after some eight hours, clear as crystal. The average cost of the water supplied by the leading metropolitan water companies is £10 10s. 9¾d. per million gallons. The charge made by the companies to consumers is about 6d. per 1,000 gallons, or £25 per million gallons. It has been found that water can on a large scale be softened from 14° hardness to 5° at a cost of 20s. per million gallons--that is, 10 per cent. on the cost of the water to the companies, or 4 per cent. as the price charged to consumers. This estimate does not take into account the value of the precipitated chalk, which has a market price, and is used for many purposes, being, in fact, whiting of the purest quality. The operations necessary in Clarke's process are four in number: (1) The preparation of milk of lime; (2) the preparation of a saturated solution of lime; (3) the mixture of this solution with the water to be softened; (4) the classification of the softened water by the separation of the precipitated substances Messrs. Law and Chatterton effect these processes by simple mechanical means which are so far automatic that they only require the presence of a person, without technical knowledge, once in each twenty-four hours. No filtering medium whatever is required, which is a great advantage for the following reasons: (1) Filtering materials require periodical cleaning and renewal, which not only occasion much trouble and mess, but are also frequently inefficiently performed. (2) Experience has shown that the filtering material, whether cloth, charcoal, or other substance, is extremely liable to become mouldy or musty, which makes the wafer both unwholesome and unpalatable. This system is especially adapted for small water supplies and for use in country houses, there being no operation to perform requiring either technical, chemical, or mechanical knowledge, nor producing dust or dirt.


Fig. 1.--LAW AND CHATTERTON'S WATER-SOFTENING APPARTUS.


The following is a description of this apparatus as fitted at the Hoo, Luton, Bedfordshire, for the supply of Mr. Gerard Leigh's house, grounds, and home farm. The mixing of the lime and the subsequent stirring of the water is effected by water power obtained from a turbine. The whole of the apparatus and tanks occupy a space 60 ft. square, 3,600 ft. area, and soften a daily supply of 50,000 gallons.


Fig. 2


A pump driven from the turbine forces the water to a reservoir in the park and on to the house, an ingenious automatic arrangement worked by the overflow from the cistern throwing the pump out of gear when the tank is full. A, B, and C. Figs. 1 to 6 herewith, are three tanks in which the water remains to be softened, each capable of holding one day's supply. D and E are two smaller tanks in which the lime water is prepared; X is the automatic valve apparatus by which the connections between the several tanks are effected in the order and at the times required; H and H show the positions in which two pumps should be placed, the former for pumping unsoftened water into the tanks, the latter to pump the softened water into the supply cistern. J is the pipe from the well or other source of supply--in case the supply is at a higher level, one pump can be dispensed with. The operation consists in adding to the water to be softened a certain quantity of lime water, depending upon the degree of hardness, and in then allowing the mixture to rest in a state of perfect quiescence until the whole of the lime has been deposited and the water has become perfectly clear. The tank, A, has been filled with unsoftened water. Tank B contains the water and lime in process of clarification by subsidence after mechanical agitation by the screw. Tank C contains the softened water--and the precipitate--in process of removal for consumption. The mode of working is as follows: The milk of lime, prepared by slaking new lime in a "Michele mixer"--not shown. One of the tanks, D, having been filled with softened water, run by gravity from one of the tanks, A, B, or C, the requisite amount of milk of lime is allowed to flow into it from the lining machine, and the whole having been thoroughly mixed by the patent agitator, G, is left in a quiescent state for some hours, when the superabundant lime falls to the bottom, and the tank contains a perfectly clear and saturated solution of lime. The requisite quantity of lime water is then suffered to flow by gravity into whichever of the three tanks is empty. In the mean while, the softened water is being withdrawn by pumping or gravitation, as the case may be, from the tank C, until, upon the water being lowered to within a certain distance of the bottom, an automatic arrangement shifts the valve, X, so that the supply then commences from B, the unsoftened water flows into C, and the water is in process of clarification in A, and thus the operation proceeds continuously. Where the water can be supplied by gravitation, and the tanks can be placed at a sufficient elevation to command the service cistern, no pumps are required, the softening process, in fact, in no way necessitating pumping. The space occupied by the whole of the tanks and apparatus is 60 ft. square, 3,600 ft. area, and softens 50,000 gallons per day. For the daily softening of quantities less than 1,000 gallons, the tanks are made of galvanized sheet iron, and the whole apparatus and tanks are self-contained, so as only to require the making of the necessary connections with the existing supply and delivery pipes, and fixing in place. No expensive foundations are required, and the entire cost of an apparatus--see Figs. 2, 3, 4, 5, and 6--capable of softening 500 gallons per day is about £75. Annexed is a more detailed description of the manner of fixing and working the smaller apparatus.


Fig. 3


The tank must, of course, be set up perfectly level. The pipe from the source of supply--in the present case from the hydraulic ram--must be attached to the upper three way cock at A, on the accompanying engravings, and the pipe to supply softened water is to be connected to the lower three-way cock at B, and should be led into the elevated cistern with a ball cock so as to keep it always filled. The three ball cocks in C, D, and E should be adjusted to allow the tanks to fill to within 3 in. of the top. The nuts at the upper extremity of the three rods, F, G, and H, should be so adjusted that when the water in the several tanks has been drawn down to within 15 in. of the bottom the rocking shaft, I I, is drawn down and the vertical rod, J, lifted so as to allow the wheel, K, and spindle, L, to revolve by the action of the weight, M. The length of the chain is such that when the weight, M, rests upon the floor the face of the raised rim on the wheel, K, should not quite touch the rod, J, and if necessary, a thin packing should be put for the weight to drop upon. The lime to be used should be pure chalk lime free from clay, mixed with water to a smooth, creamy consistency, and then poured into the small tank, N. This tank should then be filled with water to within 3 in. of the top, and the small air pump worked until the lime has become thoroughly mixed and diffused throughout the water. Care must be taken that previous to filling the tank the float, O, is raised up, as shown by the dotted lines in Fig. 3. After the lime has been thoroughly mixed it should be left for at least eight hours for the superabundant lime to subside, leaving the supernatant fluid a perfectly clear saturated solution of lime. At the end of this time the float, O, should be lowered, so that it may float upon the lime water, and the three-way cock, P, should be turned in such a position as to allow the contents of the tank, N, run into the tank, Q, until the necessary quantity has been supplied, the mode of determining which is hereinafter described.


Fig. 4


The spindle, L, should then be turned into the position which allows the water from the source of supply to be discharged into the tank, Q, the float, R, having first been raised into the position shown in Figs. 2 and 5. A second quantity of the lime should now be added to the tank, N, mixed with water, and after agitation, another eight hours allowed for the contents of both the tanks, Q and N, to subside. At the end of this time the three-way cock, P, should be turned through a third of a circle, so as to discharge the lime water into the tank, S; and the spindle, L, should be turned in the contrary direction to the hands of a watch through the third of a circle, so as to allow the water from the source of supply to be discharged into the tank, S, care being taken as before to raise the float, T, out of the water. A third quantity of lime must be added to the tank, N, and now mixed with water to be drawn from the tank, Q, by the tap, U, and after agitation again left for eight hours to subside. The float, R, may now be lowered into the water in the tank, Q, when it will be found that the clear softened water contained in the tank, Q, will be discharged through the pipe attached to the bottom of the three way tap, B. The weight, M, must now be lifted about 5 in., so as to allow the ring at the end of the chain to be moved back to the next stud on the wheel, K. The lime water in the tank, N, must next be discharged into the tank, V, and then another quantity of lime must be added to the tank, N, and filled up with softened water from the tank, S, by means of the tap, W, and after being duly agitated and left to subside. As soon as the softened water from the tank, Q, has been drawn down to within 15 in. of the bottom, the rod, H, will move the rocking shaft, I, and lift the rod, J, so releasing the wheel, K, and allowing the weight, M, to descend and turn the spindle, L, and the upper and lower three-way cocks through a third of a circle; the effect of which movement will be to continue the supply of softened water from the tank, S, and to fill up the tank, V, with water from the source of supply.


Fig. 5


The apparatus will now be in the condition to afford a regular supply of softened water; all that will be necessary to insure its continuous action will be that at certain stated intervals dependent upon the rapidity with which the water is used--but which interval should not be less than eight hours--the following things should be done: (1) The float must be raised out of the tank last emptied. (2) The float must be lowered into the tank last filled. (3) The weight, M, must be raised, and the ring of the chain shifted to the next stud on the wheel, K. (4) The clear lime water found in the tank, N, must be turned into the tank last emptied. (5) The requisite quantity of lime must be put into the tank, N. (6) The requisite quantity of water must be drawn off from the tank last filled into the tank, N. (7) The contents of tank, N, must be thoroughly mixed by means of the air pump. The quantity of lime to be used for each tankful of water must depend upon the hardness of the water, ¾ oz. being required for each tankful for each degree of hardness. It is desirable, however, always to have an excess of lime in the tank, N, so as to insure obtaining a saturated solution of lime. When first mixed the contents of the tank, N, will have a creamy appearance, but when the superabundant lime has subsided the supernatant liquid will be a perfectly clear saturated solution of lime. Therefore, in the first instance, 3 lb. of lime should be put into the tank, N, and subsequently each time such a quantity of lime should be added as is found to be necessary by the method hereinafter described. The quantity of the saturated lime water to be run into each of the softening tanks, Q, S, and V, will depend upon the hardness of the water. For every degree of temporary hardness a depth of 1-6/10 in. of the contents of the tank, N, will be required; so that if the water has 14 deg. of temporary hardness, then 22½ in. in depth of lime water must be run off into each of the tanks, Q, S, and V. In the first instance an excess of lime may be used, and the softened water tested by means of nitrate of silver in the following manner: A solution of 1 oz. of nitrate of silver in a pint of twice distilled water should be obtained. Having let two or three drops of this solution fall on the bottom of a white tea cup, slowly add the softened water; then if there be any excess of lime, a yellow color will show itself, and the quantity of lime water used must be reduced until only the faintest trace of color is perceptible.--The Engineer.


Fig. 6




About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2005). Scientific American Supplement, No. 392, July 7, 1883. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/8742/pg8742-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.