Listen to this story
We publish the best academic papers on rule-based techniques, LLMs, & the generation of text that resembles human text.
Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.
Authors:
(1) TIMNIT GEBRU, Black in AI;
(2) JAMIE MORGENSTERN, University of Washington;
(3) BRIANA VECCHIONE, Cornell University;
(4) JENNIFER WORTMAN VAUGHAN, Microsoft Research;
(5) HANNA WALLACH, Microsoft Research;
(6) HAL DAUMÉ III, Microsoft Research; University of Maryland;
(7) KATE CRAWFORD, Microsoft Research.
3.4 Preprocessing/cleaning/labeling
Acknowledgments and References
In this appendix, we provide an example datasheet for Pang and Lee’s polarity dataset [22] (figure 1 to figure 4).
Fig. 1. Example datasheet for Pang and Lee’s polarity dataset [22], page 1.
Fig. 2. Example datasheet for Pang and Lee’s polarity dataset [22], page 2.
Fig. 3. Example datasheet for Pang and Lee’s polarity dataset [22], page 3.
Fig. 4. Example datasheet for Pang and Lee’s polarity dataset [22], page 4.
This paper is available on arxiv under CC 4.0 license.