paint-brush
There is a Striking Resemblance Between Sound Waves by@archiefrederickcollins
176 reads

There is a Striking Resemblance Between Sound Waves

by A. Frederick CollinsOctober 21st, 2022
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

There is a strikingly close resemblance between sound waves and the way they are set up in the air by a mechanically vibrating body, such as a steel spring or a tuning fork, and electric waves and the way they are set up in the ether by a current oscillating in a circuit. As it is easy to grasp the way that sound waves are produced and behave something will be told about them in this chapter and also an explanation of how electric waves are produced and behave and thus you will be able to get a clear understanding of them and of tuning in general.
featured image - There is a Striking Resemblance Between Sound Waves
A. Frederick Collins HackerNoon profile picture

The Radio Amateur's Hand Book, by A. Frederick Collins is part of HackerNoon’s Book Blog Post series. You can jump to any chapter in this book here: [LINK TO TABLE OF LINK]. Chapter VII: Mechanical and Electrical Tuning

VII. MECHANICAL AND ELECTRICAL TUNING

There is a strikingly close resemblance between sound waves and the way they are set up in the air by a mechanically vibrating body, such as a steel spring or a tuning fork, and electric waves and the way they are set up in the ether by a current oscillating in a circuit. As it is easy to grasp the way that sound waves are produced and behave something will be told about them in this chapter and also an explanation of how electric waves are produced and behave and thus you will be able to get a clear understanding of them and of tuning in general.


Damped and Sustained Mechanical Vibrations.--If you will place one end of a flat steel spring in a vice and screw it up tight as shown at A in Fig. 34, and then pull the free end over and let it go it will vibrate to and fro with decreasing amplitude until it comes to rest as shown at B. When you pull the spring over you store up energy in it and when you let it go the stored up energy is changed into energy of motion and the spring moves forth and back, or vibrates as we call it, until all of its stored up energy is spent.



If it were not for the air surrounding it and other frictional losses, the spring would vibrate for a very long time as the stored up energy and the energy of motion would practically offset each other and so the energy would not be used up. But as the spring beats the air the latter is sent out in impulses and the conversion of the vibrations of the spring into waves in the air soon uses up the energy you have imparted to it and it comes to rest.


In order to send out continuous waves in the air instead of damped waves as with a flat steel spring you can use an electric driven tuning fork, see C, in which an electromagnet is fixed on the inside of the prongs and when this is energized by a battery current the vibrations of the prongs of the fork are kept going, or are sustained, as shown in the diagram at D.


Damped and Sustained Electric Oscillations.--The vibrating steel spring described above is a very good analogue of the way that damped electric oscillations which surge in a circuit set up and send out periodic electric waves in the ether while the electric driven tuning fork just described is likewise a good analogue of how sustained oscillations surge in a circuit and set up and send out continuous electric waves in the ether as the following shows.


Now the inductance and resistance of a circuit such as is shown at A in Fig. 35, slows down, and finally damps out entirely, the electric oscillations of the high frequency currents, see B, where these are set up by the periodic discharge of a condenser, precisely as the vibrations of the spring are damped out by the friction of the air and other resistances that act upon it. As the electric oscillations surge to and fro in the circuit it is opposed by the action of the ether which surrounds it and electric waves are set up in and sent out through it and this transformation soon uses up the energy of the current that flows in the circuit.



To send out continuous waves in the ether such as are needed for wireless telephony instead of damped waves which are, at the present writing, generally used for wireless telegraphy, an electric oscillation arc or a vacuum tube oscillator must be used, see C, instead of a spark gap. Where a spark gap is used the condenser in the circuit is charged periodically and with considerable lapses of time between each of the charging processes, when, of course, the condenser discharges periodically and with the same time element between them. Where an oscillation arc or a vacuum tube is used the condenser is charged as rapidly as it is discharged and the result is the oscillations are sustained as shown at D.


About Mechanical Tuning.--A tuning fork is better than a spring or a straight steel bar for setting up mechanical vibrations. As a matter of fact a tuning fork is simply a steel bar bent in the middle so that the two ends are parallel. A handle is attached to middle point of the fork so that it can be held easily and which also allows it to vibrate freely, when the ends of the prongs alternately approach and recede from one another. When the prongs vibrate the handle vibrates up and down in unison with it, and imparts its motion to the sounding box, or resonance case as it is sometimes called, where one is used.


If, now, you will mount the fork on a sounding box which is tuned so that it will be in resonance with the vibrations of the fork there will be a direct reinforcement of the vibrations when the note emitted by it will be augmented in strength and quality. This is called simple resonance. Further, if you mount a pair of forks, each on a separate sounding box, and have the forks of the same size, tone and pitch, and the boxes synchronized, that is, tuned to the same frequency of vibration, then set the two boxes a foot or so apart, as shown at A in Fig. 36, when you strike one of the forks with a rubber hammer it will vibrate with a definite frequency and, hence, send out sound waves of a given length. When the latter strike the second fork the impact of the molecules of air of which the sound waves are formed will set its prongs to vibrating and it will, in turn, emit sound waves of the same length and this is called sympathetic resonance, or as we would say in wireless the forks are in tune.



Tuning forks are made with adjustable weights on their prongs and by fixing these to different parts of them the frequency with which the forks vibrate can be changed since the frequency varies inversely with the square of the length and directly with the thickness [Footnote: This law is for forks having a rectangular cross-section. Those having a round cross-section vary as the radius.] of the prongs. Now by adjusting one of the forks so that it vibrates at a frequency of, say, 16 per second and adjusting the other fork so that it vibrates at a frequency of, say, 18 or 20 per second, then the forks will not be in tune with each other and, hence, if you strike one of them the other will not respond. But if you make the forks vibrate at the same frequency, say 16, 20 or 24 per second, when you strike one of them the other will vibrate in unison with it.


About Electric Tuning.--Electric resonance and electric tuning are very like those of acoustic resonance and acoustic tuning which I have just described. Just as acoustic resonance may be simple or sympathetic so electric resonance may be simple or sympathetic. Simple acoustic resonance is the direct reinforcement of a simple vibration and this condition is had when a tuning fork is mounted on a sounding box. In simple electric resonance an oscillating current of a given frequency flowing in a circuit having the proper inductance and capacitance may increase the voltage until it is several times greater than its normal value. Tuning the receptor circuits to the transmitter circuits are examples of sympathetic electric resonance. As a demonstration if you have two Leyden jars (capacitance) connected in circuit with two loops of wire (inductance) whose inductance can be varied as shown at B in Fig. 36, when you make a spark pass between the knobs of one of them by means of a spark coil then a spark will pass in the gap of the other one provided the inductance of the two loops of wire is the same. But if you vary the inductance of the one loop so that it is larger or smaller than that of the other loop no spark will take place in the second circuit.


When a tuning fork is made to vibrate it sends out waves in the air, or sound waves, in all directions and just so when high frequency currents surge in an oscillation circuit they send out waves in the ether, or electric waves, that travel in all directions. For this reason electric waves from a transmitting station cannot be sent to one particular station, though they do go further in one direction than in another, according to the way your aerial wire points.


Since the electric waves travel out in all directions any receiving set properly tuned to the wave length of the sending station will receive the waves and the only limit on your ability to receive from high-power stations throughout the world depends entirely on the wave length and sensitivity of your receiving set. As for tuning, just as changing the length and the thickness of the prongs of a tuning fork varies the frequency with which it vibrates and, hence, the length of the waves it sends out, so, too, by varying the capacitance of the condenser and the inductance of the tuning coil of the transmitter the frequency of the electric oscillations set up in the circuit may be changed and, consequently, the length of the electric waves they send out. Likewise, by varying the capacitance and the inductance of the receptor the circuits can be tuned to receive incoming electric waves of whatever length within the limitation of the apparatus.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books. This book is part of the public domain.

Collins, A. Frederick. 2002. The Radio Amateur's Hand Book. Urbana, Illinois: Project Gutenberg. Retrieved April 2022, from https://www.gutenberg.org/files/6934/6934-h/6934-h.htm#chap07

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever.  You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.