paint-brush
The Zodiacal Light Mysteryby@serviss
120 reads

The Zodiacal Light Mystery

by Garrett P. ServissMarch 26th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

There is a singular phenomenon in the sky—one of the most puzzling of all—which has long arrested the attention of astronomers, defying their efforts at explanation, but which probably not one in a hundred, and possibly not one in a thousand, of the readers of this book has ever seen. Yet its name is often spoken, and it is a conspicuous object if one knows when and where to look for it, and when well seen it exhibits a mystical beauty which at the same time charms and awes the beholder. It is called “The Zodiacal Light,” because it lies within the broad circle of the Zodiac, marking the sun’s apparent annual path through the stars. What it is nobody has yet been able to find out with certainty, and books on astronomy usually speak of it with singular reserve. But it has given rise to many remarkable theories, and a true explanation of it would probably throw light on a great many other celestial mysteries. The Milky Way is a more wonderful object to look upon, but its nature can be comprehended, while there is a sort of uncanniness about the Zodiacal Light which immediately impresses one upon seeing it, for its part in the great scheme of extra-terrestrial affairs is not evident.
featured image - The Zodiacal Light Mystery
Garrett P. Serviss HackerNoon profile picture

Curiosities of the Sky by Garrett Putman Serviss is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Zodiacal Light Mystery

The Zodiacal Light Mystery

There is a singular phenomenon in the sky—one of the most puzzling of all—which has long arrested the attention of astronomers, defying their efforts at explanation, but which probably not one in a hundred, and possibly not one in a thousand, of the readers of this book has ever seen. Yet its name is often spoken, and it is a conspicuous object if one knows when and where to look for it, and when well seen it exhibits a mystical beauty which at the same time charms and awes the beholder. It is called “The Zodiacal Light,” because it lies within the broad circle of the Zodiac, marking the sun’s apparent annual path through the stars. What it is nobody has yet been able to find out with certainty, and books on astronomy usually speak of it with singular reserve. But it has given rise to many remarkable theories, and a true explanation of it would probably throw light on a great many other celestial mysteries. The Milky Way is a more wonderful object to look upon, but its nature can be comprehended, while there is a sort of uncanniness about the Zodiacal Light which immediately impresses one upon seeing it, for its part in the great scheme of extra-terrestrial affairs is not evident.

If you are out-of-doors soon after sunset—say, on an evening late in the month of February—you may perceive, just after the angry flush of the dying winter’s day has faded from the sky, a pale ghostly presence rising above the place where the sun went down. The writer remembers from boyhood the first time it was pointed out to him and the unearthly impression that it made, so that he afterward avoided being out alone at night, fearful of seeing the spectral thing again. The phenomenon brightens slowly with the fading of the twilight, and soon distinctly assumes the shape of an elongated pyramid of pearly light, leaning toward the south if the place of observation is in the northern hemisphere. It does not impress the observer at all in the same manner as the Milky Way; that looks far off and is clearly among the stars, but the Zodiacal Light seems closer at hand, as if it were something more intimately concerning the earth. To all it immediately suggests a connection, also, with the sunken sun. If the night is clear and the moon absent (and if you are in the country, for city lights ruin the spectacles of the sky), you will be able to watch the apparition for a long time. You will observe that the light is brightest near the horizon, gradually fading as the pyramidal beam mounts higher, but in favorable circumstances it may be traced nearly to the meridian south of the zenith, where its apex at last vanishes in the starlight. It continues visible during the evenings of March and part of April, after which, ordinarily, it is seen no more, or if seen is relatively faint and unimpressive. But when autumn comes it appears again, this time not like a wraith hovering above the westward tomb of the day-god, but rather like a spirit of the morning announcing his reincarnation in the east.

The reason why the Zodiacal Light is best seen in our latitudes at the periods just mentioned is because at those times the Zodiac is more nearly perpendicular to the horizon, first in the west and then in the east; and, since the phenomenon is confined within the borders of the Zodiac, it cannot be favorably placed for observation when the zodiacal plane is but slightly inclined to the horizon. Its faint light requires the contrast of a background of dark sky in order to be readily perceptible. But within the tropics, where the Zodiac is always at a favorable angle, the mysterious light is more constantly visible. Nearly all observant travelers in the equatorial regions have taken particular note of this phenomenon, for being so much more conspicuous there than in the temperate zones it at once catches the eye and holds the attention as a novelty. Humboldt mentions it many times in his works, for his genius was always attracted by things out of the ordinary and difficult of explanation, and he made many careful observations on its shape, its brilliancy, and its variations; for there can be no doubt that it does vary, and sometimes to an astonishing degree. It is said that it once remained practically invisible in Europe for several years in succession. During a trip to South Africa in 1909 an English astronomer, Mr E. W. Maunder, found a remarkable difference between the appearance of the Zodiacal Light on his going and coming voyages. In fact, when crossing the equator going south he did not see it at all; but on returning he had, on March 6th, when one degree south of the equator, a memorable view of it.

It was a bright, clear night, and the Zodiacal Light was extraordinarily brilliant—brighter than he had ever seen it before. The Milky Way was not to be compared with it. The brightest part extended 75° from the sun. There was a faint and much narrower extension which they could just make out beyond the Pleiades along the ecliptic, but the greater part of the Zodiacal Light showed as a broad truncated column, and it did not appear nearly as conical as he had before seen it.

When out of the brief twilight of intertropical lands, where the sun drops vertically to the horizon and night rushes on like a wave of darkness, the Zodiacal Light shoots to the very zenith, its color is described as a golden tint, entirely different from the silvery sheen of the Milky Way. If I may venture again to refer to personal experiences and impressions, I will recall a view of the Zodiacal Light from the summit of the cone of Mt Etna in the autumn of the year 1896 (more briefly described in Astronomy with the Naked Eye). There are few lofty mountains so favorably placed as Etna for observations of this kind. It was once resorted to by Prof. George E. Hale, in an attempt to see the solar corona without an eclipse. Rising directly from sea-level to an elevation of nearly eleven thousand feet, the observer on its summit at night finds himself, as it were, lost in the midst of the sky. But for the black flanks of the great cone on which he stands he might fancy himself to be in a balloon. On the occasion to which I refer the world beneath was virtually invisible in the moonless night. The blaze of the constellations overhead was astonishingly brilliant, yet amid all their magnificence my attention was immediately drawn to a great tapering light that sprang from the place on the horizon where the sun would rise later, and that seemed to be blown out over the stars like a long, luminous veil. It was the finest view of the Zodiacal light that I had ever enjoyed—thrilling in its strangeness—but I was almost disheartened by the indifference of my guide, to whom it was only a light and nothing more. If he had no science, he had less poetry—rather a remarkable thing, I thought, for a child of his clime. The Light appeared to me to be distinctly brighter than the visible part of the Milky Way which included the brilliant stretches in Auriga and Perseus, and its color, if one may speak of color in connection with such an object, seemed richer than that of the galactic band; but I did not think of it as yellow, although Humboldt has described it as resembling a golden curtain drawn over the stars, and Du Chaillu in Equatorial Africa found it of a bright yellow color. It may vary in color as in conspicuousness. The fascination of that extraordinary sight has never faded from my memory. I turned to regard it again and again, although I had never seen the stellar heavens so brilliant, and it was one of the last things I looked for when the morning glow began softly to mount in the east, and Sicily and the Mediterranean slowly emerged from the profound shadow beneath us.

The Zodiacal Light seems never to have attracted from astronomers in general the amount of careful attention that it deserves; perhaps because so little can really be made of it as far as explanation is concerned. I have referred to the restraint that scientific writers apparently feel in speaking of it. The grounds for speculation that it affords may be too scanty to lead to long discussions, yet it piques curiosity, and as we shall see in a moment has finally led to a most interesting theory. Once it was the subject of an elaborate series of studies which carried the observer all round the world. That was in 1845—46, during the United States Exploring Expedition that visited the then little known Japan. The chaplain of the fleet, the Rev. Mr Jones, went out prepared to study the mysterious light in all its phases. He saw it from many latitudes on both sides of the equator, and the imagination cannot but follow him with keen interest in his world-circling tour, keeping his eyes every night fixed upon the phantasm overhead, whose position shifted with that of the hidden sun. He demonstrated that the flow extends at times completely across the celestial dome, although it is relatively faint directly behind the earth. On his return the government published a large volume of his observations, in which he undertook to show that the phenomenon was due to the reflection of sunlight from a ring of meteoric bodies encircling the earth. But, after all, this elaborate investigation settled nothing.

Prof. E. E. Barnard has more recently devoted much attention to the Zodiacal Light, as well as to a strange attendant phenomenon called the “Gegenschein,” or Counterglow, because it always appears at that point in the sky which is exactly opposite the sun. The Gegenschein is an extremely elusive phenomenon, suitable only for eyes that have been specially trained to see it. Professor Newcomb has cautiously remarked that

it is said that in that point of the heavens directly opposite the sun there is an elliptical patch of light... This phenomenon is so difficult to account for that its existence is sometimes doubted; yet the testimony in its favor is difficult to set aside.

It certainly cannot be set aside at all since the observations of Barnard. I recall an attempt to see it under his guidance during a visit to Mount Hamilton, when he was occupied there with the Lick telescope. Of course, both the Gegenschein and the Zodiacal Light are too diffuse to be studied with telescopes, which, so to speak, magnify them out of existence. They can only be successfully studied with the naked eye, since every faintest glimmer that they afford must be utilized. This is especially true of the Gegenschein. At Mount Hamilton, Mr Barnard pointed out to me its location with reference to certain stars, but with all my gazing I could not be sure that I saw it. To him, on the contrary, it was obvious; he had studied it for months, and was able to indicate its shape, its boundaries, its diameter, and the declination of its center with regard to the ecliptic. There is not, of course, the shadow of a doubt of the existence of the Gegenschein, and yet I question if one person in a million has ever seen or ever will see it. The Zodiacal Light, on the other hand, is plain enough, provided that the time and the circumstances of the observation are properly chosen.

In the attempts to explain the Zodiacal Light, the favorite hypothesis has been that it is an appendage of the sun—perhaps simply an extension of the corona in the plane of the ecliptic, which is not very far from coinciding with that of the sun’s equator. This idea is quite a natural one, because of the evident relation of the light to the position of the sun. The vast extension of the equatorial wings of the corona in 1878 gave apparent support to this hypothesis; if the substance of the corona could extend ten million miles from the sun, why might it not extend even one hundred million, gradually fading out beyond the orbit of the earth? A variation of this hypothesis assumes that the reflection is due to swarms of meteors circling about the sun, in the plane of its equator, all the way from its immediate neighborhood to a distance exceeding that of the earth. But in neither form is the hypothesis satisfactory; there is nothing in the appearance of the corona to indicate that it extends even as far as the planet Mercury, while as to meteors, the orbits of the known swarms do not accord with the hypothesis, and we have no reason to believe that clouds of others exist traveling in the part of space where they would have to be in order to answer the requirements of the theory. The extension of the corona in 1878 did not resemble in its texture the Zodiacal Light.

Now, it has so often happened in the history of science that an important discovery in one branch has thrown unexpected but most welcome light upon some pending problem in some other branch, that a strong argument might be based upon that fact alone against the too exclusive devotion of many investigators to the narrow lines of their own particular specialty; and the Zodiacal Light affords a case in point, when it is considered in connection with recent discoveries in chemistry and physics. From the fact that atoms are compound bodies made up of corpuscles at least a thousand times smaller than the smallest known atom—a fact which astounded most men of science when it was announced a few years ago—a new hypothesis has been developed concerning the nature of the Zodiacal Light (as well as other astronomical riddles), and this hypothesis comes not from an astronomer, but from a chemist and physicist, the Swede, Svante Arrhenius. In considering an outline of this new hypothesis we need neither accept nor reject it; it is a case rather for suspension of judgment.

To begin with, it carries us back to the “pressure of light” mentioned in the preceding chapter. The manner in which this pressure is believed generally to act was there sufficiently explained, and it only remains to see how it is theoretically extended to the particles of matter supposed to constitute the Zodiacal Light. We know that corpuscles, or “fragments of atoms” negatively electrified, are discharged from hot bodies. Streams of these “ions” pour from many flames and from molten metals; and the impact of the cathode and ultra-violet rays causes them to gush even from cold bodies. In the vast laboratory of the sun it is but reasonable to suppose that similar processes are taking place. “As a very hot metal emits these corpuscles,” says Prof. J. J. Thomson, “it does not seem an improbable hypothesis that they are emitted by that very hot body, the sun.” Let it be assumed, then, that the sun does emit them; what happens next? Negatively charged corpuscles, it is known, serve as nuclei to which particles of matter in the ordinary state are attracted, and it is probable that those emitted from the sun immediately pick up loads in this manner and so grow in bulk. If they grow large enough the gravitation of the sun draws them back, and they produce a negative charge in the solar atmosphere. But it is probable that many of the particles do not attain the critical size which, according to the principles before explained, would enable the gravitation of the sun to retain them in opposition to the pressure of the waves of light, and with these particles the light pressure is dominant. Clouds of them may be supposed to be continually swept away from the sun into surrounding space, moving mostly in or near the plane of the solar equator, where the greatest activity, as indicated by sunspots and related phenomena, is taking place. As they pass outward into space many of them encounter the earth. If the earth, like the moon, had no atmosphere the particles would impinge directly on its surface, giving it a negative electric charge. But the presence of the atmosphere changes all that, for the first of the flying particles that encounter it impart to it their negative electricity, and then, since like electric charges repel like, the storm of particles following will be sheered off from the earth, and will stream around it in a maze of hyperbolic paths. Those that continue on into space beyond the earth may be expected to continue picking up wandering particles of matter until their bulk has become so great that the solar attraction prevails again over the light pressure acting upon them, and they turn again sunward. Passing the earth on their return they will increase the amount of dust-clouds careering round it; and these will be further increased by the action of the ultra-violet rays of the sunlight causing particles to shoot radially away from the earth when the negative charge of the upper atmosphere has reached a certain amount, which particles, although starting sunward, will be swept back to the earth with the oncoming streams. As the final result of all this accumulation of flying and gyrating particles in the earth’s neighborhood, we are told that the latter must be transformed into the semblance of a gigantic solid-headed comet provided with streaming tails, the longest of them stretching away from the direction of the sun, while another shorter one extends toward the sun. This shorter tail is due to the particles that we have just spoken of as being driven sunward from the earth by the action of ultra-violet light. No doubt this whole subject is too technical for popular statement; but at any rate the general reader can understand the picturesque side of the theory, for its advocates assure us that if we were on the moon we would doubtless be able to see the comet-like tails of the earth, and then we could appreciate the part that they play in producing the phenomenon of the Zodiacal Light.

That the Light as we see it could be produced by the reflection of sunlight from swarms of particles careering round the earth in the manner supposed by Arrhenius’ hypothesis is evident enough; and it will be observed that the new theory, after all, is only another variant of the older one which attributes the Zodiacal Light to an extension of the solar corona. But it differs from the older theory in offering an explanation of the manner in which the extension is effected, and it differentiates between the corona proper and the streams of negative particles shot away from the sun. In its details the hypothesis of Arrhenius also affords an explanation of many peculiarities of the Zodiacal Light, such as that it is confined to the neighborhood of the ecliptic, and that it is stronger on the side of the earth which is just turning away from a position under the sun than on the other side; but it would carry us beyond our limits to go into these particulars. The Gegenschein, according to this theory, is a part of the same phenomenon as the Zodiacal Light, for by the laws of perspective it is evident that the reflection from the streams of particles situated at a point directly opposite to the sun would be at a maximum, and this is the place which the Gegenschein occupies. Apart from its geometrical relations to the position of the sun, the variability of the Zodiacal Light appears to affirm its solar dependence, and this too would be accounted for by Arrhenius’ hypothesis better than by the old theory of coronal extension. The amount of corpuscular discharge from the sun must naturally be governed by the state of relative activity or inactivity of the latter, and this could not but be reflected in the varying splendor of the Zodiacal Light. But much more extended study than has yet been given to the subject will be required before we can feel that we know with reasonable certainty what this mysterious phenomenon really is. By the hypothesis of Arrhenius every planet that has an atmosphere must have a Zodiacal Light attending it, but the phenomenon is too faint for us to be able to see it in the case, for instance, of Venus, whose atmosphere is very abundant. The moon has no corresponding “comet’s tail” because, as already explained, of the lack of a lunar atmosphere to repel the streams by becoming itself electrified; but if there were a lunar Zodiacal Light, no doubt we could see it because of the relative nearness of our satellite.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Garrett Putman Serviss (2004). Curiosities of the Sky. Urbana, Illinois: Project Gutenberg. Retrieved October 2022 https://www.gutenberg.org/cache/epub/6630/pg6630-images.html

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.