paint-brush

THE SUN

tldt arrow

Too Long; Didn't Read

When, with a powerful telescope, we return to the study of the sun's surface, we meet a formidable difficulty which our first simple means did not present. This arises from the nearly constant tremors of our own atmosphere, through which we have to look. It is not that the tremor does not exist with the smaller instrument, but now our higher magnifying power exaggerates it, causes everything to appear unsteady and blurry, however good the glass, and makes the same kind of trouble for the eye which we should experience if we tried to read very fine print across the top of a hot stove, whence columns of tremulous air were rising. There is no remedy for this, unless it is assiduous watching and infinite patience, for in almost every day there will come one or more brief intervals, lasting sometimes minutes, sometimes only seconds, during which the air seems momentarily tranquil. We must be on the watch for hours, to seize these favorable moments, and, piecing together what we have seen in them, in the course of time we obtain such knowledge of the more curious features of the solar surface as we now possess.
featured image - THE SUN
Scientific American Public Domain Materials HackerNoon profile picture

Scientific American, Vol. XXXIX. No. 6. [New Series.], August 10, 1878, by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE SUN.

THE SUN.

BY S. P. LANGLEY, ALLEGHENY OBSERVATORY, PA. [1]


When, with a powerful telescope, we return to the study of the sun's surface, we meet a formidable difficulty which our first simple means did not present. This arises from the nearly constant tremors of our own atmosphere, through which we have to look. It is not that the tremor does not exist with the smaller instrument, but now our higher magnifying power exaggerates it, causes everything to appear unsteady and blurry, however good the glass, and makes the same kind of trouble for the eye which we should experience if we tried to read very fine print across the top of a hot stove, whence columns of tremulous air were rising. There is no remedy for this, unless it is assiduous watching and infinite patience, for in almost every day there will come one or more brief intervals, lasting sometimes minutes, sometimes only seconds, during which the air seems momentarily tranquil. We must be on the watch for hours, to seize these favorable moments, and, piecing together what we have seen in them, in the course of time we obtain such knowledge of the more curious features of the solar surface as we now possess.


The eye aches after gazing for a minute steadily at the full moon, and the sun's light is from 300,000 to 600,000 times brighter than full moon light, while its heat is in still greater proportion. The object lens of such a telescope as the equatorial at Allegheny is 13 inches in diameter, and it is such light, and such heat, concentrated by it, that we have to gaze on. The best contrivance so far found for diminishing both, and without which our present acquaintance with the real appearance and character of sunspots would not have been gained, depends upon a curious property of light, discovered by a French physicist, Malus, in the beginning of this century. Let A (Fig. 10) be a piece of plane unsilvered glass, receiving the solar rays and reflecting them to a second similar one, B, which itself reflects them again in the direction C. Of course, since the glass is transparent, most of the rays will pass through A, and not be reflected. Of those which reach B again most will pass through, so that not a hundredth part of the original beam reaches C. This then, is so far a gain; but of itself of little use, since, such is the solar brilliancy, that even this small fraction would, to an eye at C, appear blindingly bright. Now, if we rotate B about the line joining it with A, keeping always the same reflecting angle with it, it might naturally be supposed that the light would merely be reflected in a new direction unchanged in quantity.


But according to the curious discovery of Malus this is not what happens. What does happen is that the second


glass, after being given a quarter turn (though always kept at the same angle), seems to lose its power of reflection almost altogether. The light which comes from it now is diminished enormously, and yet nothing is distorted or displaced; everything is seen correctly if enough light remains to see it by at all, and the ray is said to have been "polarized by reflection." It would be out of place to enter here on the cause of the phenomenon; the fact is certain, and is a very precious one, for the astronomer can now diminish the sun's light till it is bearable by the weakest eye, without any distortion of what he is looking at, and without disturbing the natural tints by colored glasses. In practice, a third and sometimes a fourth reflector, each of a wedge shaped, optically plane piece of unsilvered glass, are thus introduced, and by a simple rotation of the last one the light is graded at pleasure, so that with such an instrument, called "the polarizing eyepiece" (Fig. A), I have often watched the sun's magnified image for four or five hours together with no more distress to the eye than in reading a newspaper.


With this, in favorable moments, we see that the sun's surface away from the spots, everywhere, is made up of hundreds of thousands of small, intensely brilliant bodies, that seem to be floating in a gray medium, which, though itself no doubt very bright, appears dark by comparison. What these little things are is still uncertain; whatever they are, they are the immediate principal source of the sun's light and heat. To get an idea of their size we must resort to some more delicate means of measurement than we used in the case of the watch. The filar micrometer consists essentially of two excessively fine strands of cobwebs (or, rather, of spider's cocoon), called technically "wires," stretched parallel to each other and placed just at the focus of the telescope. Suppose one of them to be fixed and the second to be movable (keeping always parallel to the first) by means of a screw, having perhaps one hundred threads to the inch, and a large drum shaped head divided into one hundred equal parts, so that moving this head by one division carries the second "wire" 1/10000 part of an inch nearer to the first. Motions smaller than this can clearly be registered, but it will be evident that everything here really depends upon the accuracy of the screw. The guide screw of the best lathe is a coarse piece of work by comparison with "micrometer" screws as now constructed (especially those for making the "gratings" to be described later), for recent uses of them demand perhaps the most accurate workmanship of anything in mechanics—the maker of one which will pass some lately invented tests is entitled at any rate to call himself "a workman."


[Fig. 11.]


Since the "wires" are stretched precisely in the focus, where the principal image of the sun is formed, and move in it, they, and the features of the surface, form one picture, as magnified by the eye lens, so that they appear as if moving about on the sun itself. We can first set them far enough apart, for instance, to take in the whole of a spot, and then by bringing them together measure its apparent diameter, in ten thousandths of an inch. Then, measuring the diameter of the whole sun, we have evidently the proportion that one bears to the other, and hence the means of easily calculating the real size. A powerful piece of clockwork, attached to the equatorial, keeps it slowly rotating on its axis, at the same angular rate as that with which the sun moves in the sky, so that any spot or other object there will seem to stay fixed with relation to the "wires," if we choose, all day long. The picture of "wires," spots, and all, may be projected on a screen if desired; and Fig. 11 shows the field of view, with the micrometer wires lying across a "spot," so seen on the 6th of March, 1873. Part of a cambric needle with the end of a fine thread is represented also as being projected on the screen along with the "wires" to give a better idea of the delicacy of the latter.


Now we may measure, if we please, the size of one of those bright objects, which have just been spoken of as being countable by hundreds of thousands. These "little things" are then seen to be really of considerable size, measuring from one to three seconds of arc, so that (a second of arc here being over 400 miles) the average surface of each individual of these myriads is found to be considerably larger than Great Britain. Near the edge of the disk, under favorable circumstances, they appear to rise up through the obscuring atmosphere, which darkens the limb, and gathered here and there in groups of hundreds, to form the white cloudlike patches (faculæ), which may sometimes be seen even with a spy-glass—"something in the sun brighter than the sun itself," to employ the expression by which Huyghens described them nearly two hundred years ago. They are too minute and delicate objects to be rendered at all in our engraving; but this is true also of much of the detail to be seen at times in the spots themselves. The wood cuts make no pretense to do more than give an outline of the more prominent features, of which we are now about to speak. The wonderful beauty of some of their details must be taken on trust, from the writer's imperfect description of what no pencil has ever yet rendered and what the photograph has not yet seized.


[Fig. A.]

[Fig. 10.]

Bearing this in mind, let us now suppose that while using the polarizing eyepiece on the part of the spot distinguished by the little circle, we have one of those rare opportunities when we can, by the temporary steadiness of our tremulous atmosphere, use the higher powers of the telescope and magnify the little circle till it appears as in Fig. 12. We have now nearly the same view as if we were brought close to the surface of the sun, and suspended over this part of the spot. All the faint outer shade, seen in the smaller views (the penumbra) is seen to be made up of long white filaments, twisted into curious ropelike forms, while the central part is like a great flame, ending in fiery spires. Over these hang what look like clouds, such as we sometimes see in our highest sky, but more transparent than the finest lace vail would be, and having not the "fleecy" look of our clouds, but the appearance of being filled with almost infinitely delicate threads of light. Perhaps the best idea of what is so hard to describe, because so unlike anything on earth, is got by supposing ourselves to look through successive vails of white lace, filled with flower-like patterns, at some great body of white flame beyond, while between the spires of the flame and separating it from the border are depths of shade passing into blackness. With all this, there is something crystalline about the appearance, which it is hard to render an idea of—frost-figures on a window pane may help us as an image, though imperfect. In fact the intense whiteness of everything is oddly suggestive of something very cold, rather than very hot, as we know it really. I have had much the same impression when looking into the open mouth of a puddling furnace at the lumps of pure white iron, swimming half-melted in the grayer fluid about them. Here, however, the temperature leaves nothing solid, nothing liquid even; the iron and other metals of which we know these spot-forms do in part at least consist are turned into vapor by the inconceivable heat, and everything we are looking at consists probably of clouds of such vapor; for it is fluctuating and changing from one form into another while we look on. Forms as evanescent almost as those of sunset clouds, and far more beautiful in everything but color, are shifting before us, and here and there we see, or think we see, in the sweep of their curves beyond, evidences of mighty whirlwinds (greater by far than the largest terrestrial cyclone) at work. While we are looking, and trying to make the most of every moment, our atmosphere grows tremulous again, the shapes get confused, there is nothing left distinct but such coarser features as our engraving shows, and the wonderful sight is over. When we consider that this little portion of the spot we have been looking at is larger than the North and South American continents together, and that we could yet see its parts change from minute to minute, it must be evident that the actual motion must have been rapid almost beyond conception—a speed of from 20 to 50 miles a second being commonly observed and sometimes exceeded. (A cannon ball moves less than ¼ of a mile per second.) I have seen a portion of the photosphere, or bright general surface of the sun, drawn into a spot, much as any floating thing would be drawn into a whirlpool, and then, though it occupied by measurement over 3,000,000 miles in area, completely break up and change so as to be unrecognizable in less than twenty minutes.


When we come to discuss the subject of the sun's heat, we shall find that the temperature of a blast furnace or of the oxyhydrogen blowpipe is low compared with that which obtains all over such a vast region, and remembering this, it is evident that its disappearance is a cataclysm of which the most tremendous volcanic outburst here gives no conception. We cannot, by any terrestrial comparison, describe it, for we have no comparison for it in human experience. If we try to picture such an effect on the earth, we may say in another's words that these solar whirlwinds are such as, "coming down upon us from the north, would in thirty seconds after they had crossed the St. Lawrence be in the Gulf of Mexico, carrying with them the whole surface of the continent in a mass, not simply of ruin, but of glowing vapor, in which the vapors arising from the dissolution of the materials composing the cities of Boston, New York, and Chicago would be mixed in a single indistinguishable cloud."


These vast cavities then in the sun we call spots are not solid things, and not properly to be compared even to masses of slag or scoria swimming on a molten surface. They are rather rents in that bright cloud surface of the sun which we call the photosphere, and through which we look down to lower regions. Their shape may be very rudely likened to a funnel with sides at first slowly sloping (the penumbra), and then suddenly going down into the central darkness (the umbra). This central darkness has itself gradations of shade, and cloud forms may be seen there obscurely glowing with a reddish tinge far down its depths, but we never see to any solid bottom, and the hypothesis of a habitable sun far within the hot surface, suggested by Sir William Herschel, is now utterly abandoned. We are able now to explain in part that mysterious feature in the sun's rotation before insisted on, for if the sun be not a solid or a liquid, but a mass of glowing vapor, it is evidently possible that one part of it may turn faster than another. Why it so turns, we repeat, no one knows, but the fact that it does is now seen to bear the strongest testimony to the probable gaseous form of the sun throughout its mass—at any rate, to the gaseous or vaporous nature of everything we see. We must not forget, however, that under such enormous temperature and pressure as prevail there the conditions may be—in fact, must be—very different from any familiar to us here, so that when we speak of "clouds," and use like expressions, we are to be understood as implying rather an analogy than an exact resemblance.


[Fig. 12.]


We must expect, with the great advances photography has lately made, to know more of this part of our subject (which we may call solar meteorology) at the next spot maximum than ever before, and by that time it may be hoped that some of the wonderful forms described above so imperfectly will have been caught for us by the camera.


In the notice in our issue for July 27 of a new screw cutting lathe made by Messrs. Goodnow & Wightman, the address should have been 176 Washington street instead of 128, and the diameter of the tail spindle, which was given as 5/16, should have been 15/16 inch.


The Olympia (Wyoming Territory) Standard announces that a company has been formed there to bring ice from a glacier. The deposit covers a number of acres, is seventy or eighty feet deep, and is supposed to contain a hundred thousand or more tons, some of which may have been there as many years. The ice can be cut and sold at one and one half cents a pound, and by the ship load at five dollars a ton.





About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2013). Scientific American, Vol. XXXIX. No. 6. [New Series.], August 10, 1878. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/19406/pg19406-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html