The Genetic Effects of Radiation by Isaac Asimov is part of HackerNoon’s Book Blog Post Series. The Table of Links for this book can be found here. Dose and Consequence - Dosage Rates
Another difference between the genetic and somatic effects of radiation rests in the response to changes in the rate at which radiation is absorbed. It makes a considerable difference to the body whether a large dose of radiation is absorbed over the space of a few minutes or a few years.
When a large dose is absorbed over a short interval of time, so many of the growing tissues lose the capacity for cell division that death may follow. If the same dose is delivered over years, only a small bit of radiation is absorbed on any given day and only small proportions of growing cells lose the capacity for division at any one time. The unaffected cells will continually make up for this and will replace the affected ones. The body is, so to speak, continually repairing the radiation damage and no serious symptoms will develop.
Then, too, if a moderate dose is delivered, the body may show visible symptoms of radiation sickness but can recover. It will then be capable of withstanding another moderate dose, and so on.
The situation is quite different with respect to the genetic effects, at least as far as experiments with Drosophila and bacteria seem to show. Even the smallest doses will produce a few mutations in the chromosomes of those cells in the gonads that eventually develop into sex cells. The affected gonad cells will continue to produce sex cells with those mutations for the rest of the life of the organism. Every tiny bit of radiation adds to the number of mutated sex cells being constantly produced. There is no recovery, because the sex cells, after formation, do not work in cooperation, and affected cells are not replaced by those that are unaffected.
This means (judging by the experiments on lower creatures) that what counts, where genetic damage is in question, is not the rate at which radiation is absorbed but the total sum of radiation. Every exposure an organism experiences, however small, adds its bit of damage.
Accepting this hard view, it would seem important to make every effort to minimize radiation exposure for the population generally.
Since most of the man-made increase in background radiation is the result of the use of X rays in medical diagnosis and therapy, many geneticists are looking at this with suspicion and concern. No one suggests that their use be abandoned, for certainly such techniques are important in the saving of life and the mitigation of suffering. Still, X rays ought not to be used lightly, or routinely as a matter of course.
It might seem that X rays applied to the jaw or the chest would not affect the gonads, and this might be so if all the X rays could indeed be confined to the portion of the body at which they are aimed. Unfortunately, X rays do not uniformly travel a straight line in passing through matter. They are scattered to a certain extent; if a stream of X rays passes through the body anywhere, or even through objects near the body, some X rays will be scattered through the gonads.
It is for this reason that some geneticists suggest that the history of exposure to X rays be kept carefully for each person. A decision on a new exposure would then be determined not only by the current situation but by the individual’s past history.
Such considerations were also an important part of the driving force behind the movement to end atmospheric testing of nuclear bombs. While the total addition to the background radiation resulting from such tests is small, the prospect of continued accumulation is unpleasant.
What’s more, whereas X rays used in diagnosis and therapy have a humane purpose and chiefly affect the patient who hopes to be helped in the process, nuclear fallout affects all of humanity without distinction and seems, to many people, to have as its end only the promise of a totally destructive nuclear war.
It is not to be expected that the large majority of humanity that makes up the populations outside the United States, Great Britain, France, China, and the Soviet Union can be expected to accept stoically the risk of even limited quantities of genetic damage, out of any feeling of loyalty to nations not their own. Even within the populations of the three major nuclear powers there are strong feelings that the possible benefits of nuclear testing do not balance the certain dangers.
Public opinion throughout the world is a key factor, then, in enforcing the Nuclear Test Ban Treaty, signed by the governments of the United States, Great Britain, and the Soviet Union on October 10, 1963.
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Asimov, Isaac. (October 13, 2017). THE GENETIC EFFECTS OF RADIATION. Urbana, Illinois: Project Gutenberg. Retrieved June 2022, from https://www.gutenberg.org/files/55738/55738-h/55738-h.htm#c18
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.