The Glow-Worm and Other Beetles by Jean-Henri Fabre, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE PROBLEM OF THE SIREX
The cherry-tree supports a small jet-black Capricorn, Cerambyx cerdo, whose larval habits it was as well to study in order to learn whether the instincts are modified when the form and the organization remain identical. Has this pigmy of the family the same talents as the giant, the ravager of the oak-tree? Does it work on the same principles? The resemblance between the two, both in the larval state and in that of the perfect insect, is complete; the denizen of the cherry-tree is an exact replica, on a smaller scale, of the denizen of the oak. If instinct is the inevitable consequence of the organism, we ought to find in the two insects a strict similarity of habits; if instinct is, on the other hand, a special aptitude favoured by the organs, we must expect variations in the industry exercised. For the second time the alternative is forced upon our attention: do the implements govern the practice of the craft, or does the craft govern the employment of the implements? Is instinct derived from the organ, or is the organ instinct's servant? An old dead cherry-tree will answer our question.
Beneath its ragged bark, which I lift in wide strips, swarms a population of larvæ all belonging to Cerambyx cerdo. There are big larvæ and little larvæ; moreover, they are accompanied by nymphs. These details tell us of three years of larval existence, a duration of life frequent in the Longicorn series. If we hunt the thick of the trunk, splitting it again and again, it does not show us a single grub anywhere; the entire population is encamped between the bark and the wood. Here we find an inextricable maze of winding galleries, crammed with packed sawdust, crossing, recrossing, shrinking into little alleys, expanding into wide spaces and cutting, on the one hand, into the surface layer of the sap-wood and, on the other, into the thin sheets of the inner bark. The position speaks for itself: the larva of the little Capricorn has other tastes than its large kinsman's; for three years it gnaws the outside of the trunk beneath the thin covering of the bark, while the other seeks a deeper refuge and gnaws the inside.
The dissimilarity is yet more marked in the preparations for the nymphosis. Then the worm of the cherry-tree leaves the surface and penetrates into the wood to a depth of about two inches, leaving behind it a wide passage, which is hidden on the outside by a remnant of bark that has been discreetly spared. This spacious vestibule is the future insect's path of release; this screen of bark, easily destroyed, is the curtain that masks the exit-door. In the heart of the wood the larva finally scoops out the chamber destined for the nymphosis. This is an egg-shaped recess an inch and a quarter to an inch and three-quarters in length by two-fifths of an inch in diameter. The walls are bare, that is to say, they are not lined with the blanket of shredded fibres dear to the Capricorn of the Oak. The entrance is blocked first by a plug of fibrous sawdust, then by a chalky lid, similar, except in point of size, to that with which we are already familiar. A thick layer of fine sawdust packed into the concavity of the chalky lid, completes the barricade. Need I add that the grub lies down and goes to sleep, for the nymphosis, with its head against the door? Not one forgets to take this precaution.
The two Capricorns have, in short, the same system of closing their cells. Note above all the lens-shaped stony lid. In each case we find the same chemical composition, the same formation, like the cup of an acorn. Dimensions apart, the two structures are identical. But no other genus of Longicorn, so far as I am aware, practises this craft. I will therefore complete the classic description of the Cerambyx-beetles by adding one characteristic: they seal their metamorphosis-chambers with a chalk slab.
The similarities of habit go no farther, despite the identity of structure. There is even a very sharp contrast between the methods pursued. The Capricorn of the Oak inhabits the deep layers of the trunk; the Capricorn of the Cherry-tree inhabits the surface. In the preparations for the transformation, the first ascends from the wood to the bark, the second descends from the bark to the wood; the first risks the perils of the outer world, the second shuns them and seeks a retreat inside. The first hangs the walls of its chamber with velvet, the second knows nothing of this luxury. Though the work is almost the same in its results, it is at least carried out by contrary methods. The tool, therefore, does not govern the trade. This is what the two Cerambyx-beetles tell us.
Let us vary the testimony of the Longicorns. I am not selecting; I am recording it in the order of my discoveries. The Shagreen Saperda (S. carcharias) lives in the black poplar; the Scalary Saperda (S. scalaris) lives in the cherry-tree. In both we find the same organization and the same implements, as is fitting in two closely-related species. The Saperda of the Poplar adopts the method of the Capricorn of the Oak in its general features. It inhabits the interior of the trunk. On the approach of the transformation, it makes an exit-gallery, the door of which is open or else masked by a remnant of bark. Then, retracing its steps, it blocks the passage with a barricade of coarse packed shavings; and, at a depth of about eight inches, not far from the heart of the tree, it hollows out a cavity for the nymphosis without any particular upholstering. The defensive system is limited to the long column of shavings. To deliver itself, the insect will only have to push the heap of woody rubbish back, in so many lots; the path will open in front of it ready-made. If some screen of bark hide the gallery from the outside, its mandibles will easily dispose of that: it is soft and not very thick.
The Scalary Saperda imitates the habits of its messmate, the Capricorn of the Cherry-tree. Its larva lives between the wood and the bark. To undergo its transformation, it goes down instead of coming up. In the sap-wood, parallel with the surface of the trunk, under a layer of wood barely a twenty-fifth of an inch in thickness, it makes a cylindrical cell, rounded at the ends and roughly padded with ligneous fibres. A solid plug of shavings barricades the entrance, which is not preceded by any vestibule. Here the work of deliverance is the simplest. The Saperda has only to clear the door of his chamber to find beneath his mandibles the little bit of bark that remains to be pierced. As you see, we once more have to do with two specialists, each working in his own manner with the same tools.
The Buprestes, as zealous as the Longicorns in the destruction of trees, whether sound or ailing, tell us the same tale as the Cerambyx- and Saperda-beetles. The Bronze Buprestis (B. ænea) is an inmate of the black poplar. Her larva gnaws the interior of the trunk. For the nymphosis it installs itself near the surface in a flattened, oval cell, which is prolonged at the back by the wandering-gallery, firmly packed with wormed wood, and in front by a short, slightly curved vestibule. A layer of wood not a twenty-fifth of an inch thick is left intact at the end of the vestibule. There is no other defensive precaution; no barricade, no heap of shavings. In order to come out, the insect has only to pierce an insignificant sheet of wood and then the bark.
The Nine-spotted Buprestis (Ptosima novemmaculata) behaves in the apricot-tree precisely as the Bronze Buprestis does in the poplar. Its larva bores the inside of the trunk with very low-ceilinged galleries, usually parallel with the axis; then, at a distance of an inch and a quarter or an inch and a half from the surface, it suddenly makes a sharp turn and proceeds in the direction of the bark. It tunnels straight ahead, taking the shortest road, instead of advancing by irregular windings as at first. Moreover, a sensitive intuition of coming events inspires its chisel to alter the plan of work. The perfect insect is a cylinder; the grub, wide in the thorax but slender elsewhere, is a strap, a ribbon. The first, with its unyielding cuirass, needs a cylindrical passage; the second needs a very low tunnel, with a roof that will give a purchase to the ambulatory nipples of the back. The larva therefore changes its manner of boring utterly: yesterday, the gallery, suited to a wandering life in the thickness of the wood, was a wide burrow with a very low ceiling, almost a slot; to-day the passage is cylindrical: a gimlet could not bore it more accurately. This sudden change in the system of road-making on behalf of the coming insect once more suggests for our meditation the eminent degree of foresight possessed by a bit of an intestine.
The cylindrical exit-way passes through the strata of wood along the shortest line, almost normally, after a slight bend which connects the vertical with the horizontal, a curve with a radius large enough to allow the stiff Buprestis to tack about without difficulty. It ends in a blind-alley, less than a twelfth of an inch from the surface of the wood. The eating away of the untouched sheet of wood and of the bark is all the labour that the grub leaves the insect to perform. Having made these preparations, the larva withdraws, strengthening the wooden screen, however, with a layer of fine sawdust; it reaches the end of the round gallery, which is prolonged by the completely choked flat gallery; and here, scorning a special chamber or any upholstery, it goes to sleep for the nymphosis, with its head towards the exit.
I find numbers of specimens of a black Buprestis (B. octoguttata) in the old stumps of pine-trees left standing in the ground, hard outside but soft within, where the wood is as pliable as tinder. In this yielding substance, which has a resinous aroma, the larvæ spend their life. For the metamorphosis they leave the unctuous regions of the centre and penetrate the hard wood, where they hollow out oval recesses, slightly flattened, measuring from twenty-five to thirty millimetres1 in length. The major axis of these cells is always vertical. They are continued by a wide exit-path, sometimes straight, sometimes slightly curved, according as the tree is to be quitted through the section above or through the side. The exit-channel is nearly always bored completely; the window by which the insect escapes opens directly upon the outside world. At most, in a few rare instances, the grub leaves the Buprestis the trouble of piercing a leaf of wood so thin as to be translucent. But, if easy paths are necessary to the insect, protective ramparts are no less needed for the safety of the nymphosis; and the larva plugs the liberating channel with a fine paste of masticated wood, very different from the ordinary sawdust. A layer of the same paste divides the bottom of the chamber from the low-ceilinged gallery, the work of the grub's active life. Lastly, the magnifying-glass reveals upon the walls of the cell a tapestry of woody fibres, very finely divided, standing erect and closely shorn, so as to make a sort of velvet pile. This quilted lining, of which the Cerambyx of the Oak showed us the first example, is, it seems to me, pretty often employed by the wood-eaters, Buprestes as well as Longicorns.
1 .975 to 1.17 inch.—Translator's Note.
After these migrants, which travel from the centre of the tree to the surface, we will mention some others which from the surface plunge into the interior. A small Buprestis who ravages the cherry-trees, Anthaxia nitidula, passes his larval existence between the wood and the bark. When the time comes for changing its shape, the pigmy concerns itself, like the others, with future and present needs. To assist the perfect insect, the grub first gnaws the under side of the bark, leaving a thin screen of cuticle untouched, and then sinks in the wood a perpendicular well, blocked with unresisting sawdust. That is on behalf of the future: the frail Buprestis will be able to leave without hindrance. The bottom of the well, better wrought than the rest and ceiled with the aid of an adhesive fluid which holds the fine sawdust of the stopper in place, is a thing of the present; it is the nymphosis-chamber.
A second Buprestis, Chrysobothrys chrysostigma, likewise an exploiter of the cherry-tree, between the wood and the bark, although more vigorous, expends less labour on its preparations. Its chamber, with modestly varnished walls, is merely an expanded extension of the ordinary gallery. The grub, disinclined for persistent labour, does not bore the wood. It confines itself to hollowing a slanting dug-out in the bark, without touching the surface layer, through which the insect will have to gnaw its own way.
Thus each species displays special methods, tricks of the trade which cannot be explained merely by reference to its tools. As these minute details have consequences of some importance, I do not hesitate to multiply them: they all help to throw light upon the subject which we are investigating. Let us once more see what the Longicorns are able to tell us.
An inhabitant of old pine-stumps, Criocephalus ferus makes an exit-gallery which yawns widely on the outside world, opening either on the section of the stump or on the sides. The road is barricaded about two inches down with a long plug of coarse shavings. Next comes the nymph's cylindrical, compressed apartment, which is padded with woody fibres. It is continued underneath by the labyrinth of the larva, the burrow crammed full of digested wood. Note also the complete boring of the liberating passage, including the bark when there is any.
I find Stromatium strepens in ilex-logs which have been stripped of their bark. There is the same method of deliverance, the same passage curving gently towards the nearest outside point, the same barricade of shavings above the cell. Was the passage also carried through the bark? The stripped logs leave me ignorant as to this detail.
Clytus tropicus, a sapper of the cherry-tree, C. arietis and C. arvicola, sappers of the hawthorn, have a cylindrical exit-gallery, with a sharp turn to it. The gallery is masked on the outside by a remnant of bark or wood, hardly a millimetre thick,2 and widens, not far from the surface, into a nymphosis-chamber, which is divided from the burrow by a mass of packed sawdust.
2 .039 inch.—Translator's Note.
To continue the subject would entail an excess of monotonous repetition. The general law stands out very clearly from these few data: the wood-eating grubs of the Longicorns and Buprestes prepare the path of deliverance for the perfect insect, which will have merely in one case to pass a barricade of shavings or wormed wood, or in another to pierce a slight thickness of wood or bark. Thanks to a curious reversal of its usual attributes, youth is here the season of energy, of strong tools, of stubborn work; adult age is the season of leisure, of industrial ignorance, of idle diversions, without trade or profession. The infant has its paradise in the arms of its mother, its providence; here the infant, the grub, is the providence of the mother. With its patient tooth, which neither the perils of the outside world nor the difficult task of boring through hard wood are able to deter, it clears a way for her to the supreme delights of the sun. The youngster prepares an easy life for the adult.
Can these armour-wearers, so sturdy in appearance, be weaklings? I place nymphs of all the species that come to hand in glass tubes of the same diameter as the natal cell, lined with coarse paper, which will provide a good purchase for the boring. The obstacle to be pierced varies: a cork a centimetre thick;3 a plug of poplar, very much softened by decay; a circular disk of sound wood. Most of my captives easily pierce the cork and the soft wood; these represent to them the barricade to be overthrown, the bark curtain to be perforated. A few, however, succumb before the front to be attacked; and all perish, after fruitless attempts, before the disk of hard wood. Thus perished the strongest of them all, the Great Capricorn, in my artificial oak-wood cells and even in my reed-stumps closed with their natural partitions.
3 .39 inch.—Translator's Note.
They have not the strength, or rather the patient art; and the larva, more highly gifted, works for them. It gnaws with indomitable perseverance, an essential to success even for the strong; it digs with amazing foresight. It knows the future shape of the adult, whether round or oval, and bores the exit-passage accordingly, making it cylindrical in one case and elliptical in the other. It knows that the adult is very impatient to reach the light; and it leads her thither by the shortest way. In its wandering life in the heart of the tree, it loves low-roofed, winding tunnels, just big enough to pass through, or widening into stations when it strikes a vein with a better flavour; now, it makes a short, straight, roomy corridor, leading with a sharp bend to the outside world. It had plenty of time during its capricious wanderings; the adult has none to spare: his days are numbered; he must get out as quickly as he can. Hence the shortest road and as little encumbered by obstacles as is consistent with safety. The grub knows that the too sudden junction of the horizontal and the vertical part would stop the stiff, inflexible insect and bends it towards the outside with a gentle curve. This elbow changing the direction occurs whenever the larva ascends from the depths; it is very short when the nymphosis-chamber is next to the surface, but continues for some length when the chamber is well inside the trunk. In this case, the path traced by the grub has so regular a curve that you feel inclined to subject the work to geometrical measurement.
For want of sufficient data, I should have left this elbow in the shadow of a note of interrogation, had I had at my disposal only the emergence-galleries of the Longicorns and Buprestes, which are too short to lend themselves to trustworthy examination with the compasses. A lucky find provided me with the factors required. This was the trunk of a dead poplar, riddled, to a height of several yards, with an infinite number of round holes the diameter of a pencil. The precious pole, still standing, is uprooted with due respect, in view of my designs, and carried into my study, where it is sawn into longitudinal sections planed smooth.
The wood, while retaining its structure, has been greatly softened by the presence of the mycelium of a mushroom, the agaric of the poplar. The inside is decayed. The outer layers, to a depth of over four inches, are in good condition, save for the innumerable curved passages that cut through them. In a section involving the whole diameter of the trunk, the galleries of the late occupant produce a pleasing effect, of which a sheaf of corn gives us a pretty faithful image. Almost straight, parallel with one another and assembled in a bundle down the middle, they diverge at the top and spread into a cluster of wide curves, each of which ends in one of the holes on the surface. It is a sheaf of passages which has not the single head of a sheaf of corn, but shoots its innumerable sprouts hither and thither, at all heights.
I am enraptured by this magnificent specimen. The curves, of which I uncover a layer at every stroke of the plane, far exceed my requirements; they are strikingly regular; they afford the compasses the full space needed for accurate measurement.
Before calling in geometry, let us, if possible, name the creator of these beautiful curves. The inhabitants of the poplar have disappeared, perhaps long ago, as is proved by the mycelium of the agaric; the insect would not gnaw and bore its way through timber all permeated with the felt-like growth of the cryptogam. A few weaklings, however, have died without being able to escape. I find their remains swathed in mycelium. The agaric has preserved them from destruction by wrapping them in tight cerements. Under these mummy-bandages, I recognise a Saw-fly, Sirex augur, KLUG., in the state of the perfect insect. And—this is an important detail—all these adult remains, without a single exception, occupy spots which have no means of communication with the outside. I find them sometimes in a partly-constructed curved passage, beyond which the wood remains intact, sometimes at the end of the straight central gallery, choked with sawdust, which is not continued in front. These remains, with no thoroughfare before them, tell us plainly that the Sirex adopts for its exit methods not employed by the Buprestes and the Longicorns.
The larva does not prepare the path of deliverance; it is left for the perfect insect to open itself a passage through the wood. What I have before my eyes tells me more or less plainly the sequence of events. The larva, whose presence is proved by galleries blocked with packed sawdust, do not leave the centre of the trunk, a quieter retreat, less subject to the vicissitudes of the climate. Metamorphosis is effected at the junction of the straight gallery and the curved passage which is not yet made. When strength comes, the perfect insect tunnels ahead for a distance of more than four inches and opens up the exit-passage, which I find choked, not with compact sawdust, but with loose powdery rubbish. The dead insects which I strip of their mycelium-shrouds are weaklings whose strength deserted them mid-way. The rest of the passage is lacking because the labourer died on the road.
With this fact of the insect itself boring the exit passage, the problem assumes a more troublesome form. If the larva, rich in leisure and satisfied with its sojourn in the interior of the trunk, simplifies the coming emergence by shortening the road, what must not the adult do, who has so short a time to live and who is in so great a hurry to leave the hateful darkness? He above any other should be a judge of short cuts. To go from the murky heart of the tree to the sun-steeped bark, why does he not follow a straight line? It is the shortest way.
Yes, for the compasses, but not perhaps for the sapper. The length traversed is not the only factor of the work accomplished, of the total activity expended. We must take into account the resistance overcome, a resistance which varies according to the depth of the more or less hard strata and according to the method of attacking the woody fibres, which are either broken across or divided lengthwise. Under these conditions, whose value remains to be determined, can there be a curve involving a minimum of mechanical labour in cutting through the wood?
I was already trying to discover how the resistance may vary according to depth and direction; I was working out my differentials and my minimum integrals, when a very simple idea overturned my slippery scaffolding. The calculation of variations has nothing to do with the matter. The animal is not the moving body of the mathematicians, the particle of matter guided in its trajectory solely by the motive forces and the resistance of the medium traversed; it bears within itself conditions which control the others. The adult insect does not even enjoy the larva's privileges; it cannot bend freely in all directions. Under its harness it is almost a stiff cylinder. To simplify the explanation, we may liken the insect to a section of an inflexible straight line.
Let us return to the Sirex, reduced by abstraction to its axis. The metamorphosis is effected not far from the centre of the trunk. The insect lies lengthwise in the tree with its head up, very rarely with its head down. It must reach the outside as quickly as possible. The section of an inflexible straight line that represents it nibbles away a little wood in front of it and obtains a shallow cavity wide enough to allow of a very slight turn towards the outside. An infinitesimal advance is made; a second follows, the result of a similar cavity and a similar turn in the same direction. In short, each change of position is accompanied by the tiny deviation permitted by the slight excess of width of the hole; and this deviation invariably points the same way. Imagine a magnetic needle swung out of its position and tending to return to it while moving with a uniform speed through a resisting medium in which a sheath of a diameter slightly greater than the needle's opens bit by bit. The Sirex behaves more or less in the same fashion. His magnetic pole is the light outside. He makes for that direction by imperceptible deviations as his tooth digs.
The problem of the Sirex is now solved. The trajectory is composed of equal elements, with an invariable angle between them; it is the curve whose tangents, divided by infinitely small distances, retain the same inclination between each one and the next; the curve, in a word, with a constant angle of contingence. This characteristic betrays the circumference of the circle.
It remains to discover whether the facts confirm the logical argument. I take accurate tracings of a score of galleries, selecting those whose length best lends itself to the test of the compasses. Well, logic agrees with reality: over lengths which sometimes exceed four inches, the track of the compasses is identical with that of the insect. The most pronounced deviations do not exceed the small variations which we must reasonably expect in a problem of a physical nature, a problem incompatible with the absolute accuracy of abstract truths.
The Sirex' exit-gallery then is a wide arc of a circle whose lower extremity is connected with the corridor of the larva and whose upper extremity is prolonged in a straight line which ends at the surface with a perpendicular or slightly oblique incidence. The wide connecting arc enables the insect to tack about. When, starting from a position parallel with the axis of the tree, the Sirex has passed gradually to a transversal position, he completes his course in a straight line, which is the shortest road.
Does the trajectory imply the minimum of work? Yes, under the conditions of the insect's existence. If the larva had taken the precaution to place itself in a different direction when preparing for the nymphosis, to turn its head towards the nearest point of the bark instead of turning it lengthwise with the trunk, obviously the adult would escape more easily: he would merely have to gnaw straight in front of him in order to pass through the minimum thickness. But reasons of convenience whereof the grub is the sole judge, reasons dictated perhaps by weight, cause the vertical to precede the horizontal position. In order to pass from the former to the latter, the insect veers round by describing the arc of a circle. When this turn has been effected, the distance is completed in a straight line.
Let us consider the Sirex at his starting-point. His stiffness of necessity compels him to turn gradually. Here the insect can do nothing of its own initiative; everything is mechanically determined. But, being free to pivot on its axis and to attack the wood on either side of the sheath, it has the option of attempting this reversal in a host of different ways, by a series of connected arcs, not in the same plane. Nothing prevents it from describing winding curves by revolving upon itself: spirals, loops constantly changing their direction, in fact, the complicated route of a creature that has lost its way. It might wander in a tortuous maze, making fresh attempts here, there and everywhere, groping for ever so long without succeeding.
But it does not grope and it succeeds very well. Its gallery is still contained within one plane, the first condition of the minimum of labour. Moreover, of the different vertical planes that can pass through the eccentric starting-point, one, the plane which passes through the axis of the tree, corresponds on the one side with the minimum of resistance to be overcome and on the other with the maximum. Nothing prevents the Sirex from tracing his path in any one of the multitude of planes on which the path would possess an intermediate value between the shortest and the longest. The insect refuses them all and constantly adopts the one which passes through the axis, choosing, of course, the side that entails the shortest path. In brief, the Sirex' gallery is contained in a plane pointing towards the axis of the tree and the starting-point; and of the two portions of this plane the channel passes through the less extensive. Under the conditions, therefore, imposed upon him by his stiffness the hermit of the poplar-tree releases himself with the minimum of mechanical labour.
The miner guides himself by the compass in the unknown depths underground, the sailor does the same in the unknown ocean solitudes. How does the wood-eating insect guide itself in the thickness of a tree-trunk? Has it a compass? One would almost say that it had, so successfully does it keep to the quickest road. Its goal is the light. To reach this goal, it suddenly chooses the economical plane trajectory, after spending its larval leisure in roaming tortuous passages full of irregular curves; it bends it in an arc which allows it to turn about; and, with its head held plumb with the adjacent surface, it goes straight ahead by the nearest way.
The most extraordinary obstacles are powerless to turn it aside from its plane and its curve, so imperative is its guiding force. It will gnaw metal, if need be, rather than turn its back upon the light, which it feels to be close at hand. The entomological records place this incredible fact beyond a doubt. At the time of the Crimean War, the Institut de France received some packets of cartridges in which the bullets had been perforated by Sirex juvencus; a little later, at the Grenoble Arsenal, S. gigas carved himself a similar exit. The larva was in the wood of the cartridge-boxes; and the adult insect, faithful to its direction of escape, had bored through the lead because the nearest daylight was behind that obstacle.
There is an exit-compass, that is incontestable, both for the larvæ preparing the passage of deliverance and for the adult insect, the Sirex obliged to make that passage for himself. What is it? Here the problem becomes surrounded with a darkness which is perhaps impenetrable; we are not well enough equipped with means of receiving impressions even to imagine the causes which guide the creature. There is, in certain events, another world of the senses in which our organs perceive nothing, a world which is closed to us. The eye of the camera sees the invisible and photographs the image of the ultra-violet rays; the tympanum of the microphone hears what to us is silence. A scientific toy, a chemical contrivance surpass us in sensibility. Would it be rash to attribute similar faculties to the delicate organization of the insect, even with regard to agencies unknown to our science, because they do not fall within the domain of our senses? To this question there is no positive reply; we have suspicions and nothing more. Let us at least dispel a few false notions that might occur to us.
Does the wood guide the insect, adult or larva, by its structure? Gnawed across the grain, it must produce a certain impression; gnawed lengthwise, it must produce a different impression. Is there not something here to guide the sapper? No, for in the stump of a tree left standing the emergence takes place, according to the proximity of the light, sometimes by way of the horizontal section, by means of a rectilinear path running along the grain, and sometimes by way of the side, by means of a curved road cutting across the grain.
Is the compass a chemical influence, or electrical, or calorific, or what not? No, for in an upright trunk the emergence is effected as often by the north face, which is always in the shade, as by the south face, which receives the sun all day long. The exit-door opens in the side which is nearest, without any other condition. Can it be the temperature? Not that either, for the shady side, though cooler, is utilized as often as the side facing the sun.
Can it be sound? Not so. The sound of what, in the silence of solitude? And are the noises of the outside world propagated through half an inch of wood in such a way as to make differences perceptible? Can it be weight? No again, for the trunk of the poplar shows us more than one Sirex travelling upside down, with his head towards the ground, without any change in the direction of the curved passages.
What then is the guide? I have no idea. It is not the first time that this obscure question has been put to me. When studying the emergence of the Three-pronged Osmia from the bramble-stems shifted from their natural position by my wiles, I recognized the uncertainty in which the evidence of physical science leaves us; and, in the impossibility of finding any other reply, I suggested a special sense, the sense of open space. Instructed by the Sirex, the Buprestes, the Longicorns, I am once again compelled to make the same suggestion. It is not that I care for the expression: the unknown cannot be named in any language. It means that the hermits in the dark know how to find the light by the shortest road; it is the confessions of an ignorance which no honest observer will blush to share. Now that the evolutionists' interpretations of instinct have been recognized as worthless, we all come to that stimulating maxim of Anaxagoras', which laconically sums up the result of my researches:
"[Greek: Nous pánta diekosmése]. Mind orders all things."
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Jean-Henri Fabre (2009). The Glow-Worm and Other Beetles. Urbana, Illinois: Project Gutenberg. Retrieved October https://www.gutenberg.org/cache/epub/27868/pg27868-images.html
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.