2 Background and 2.1 Transformer-Based Large Language Models
2.2 LLM Service & Autoregressive Generation
2.3 Batching Techniques for LLMs
3 Memory Challenges in LLM Serving
3.1 Memory Management in Existing Systems
4 Method and 4.1 PagedAttention
4.3 Decoding with PagedAttention and vLLM
4.4 Application to Other Decoding Scenarios
6 Evaluation and 6.1 Experimental Setup
6.3 Parallel Sampling and Beam Search
10 Conclusion, Acknowledgement and References
In this section, we describe the generation and serving procedures of typical LLMs and the iteration-level scheduling used in LLM serving.
The task of language modeling is to model the probability of a list of tokens (𝑥1, . . . , 𝑥𝑛). Since language has a natural sequential ordering, it is common to factorize the joint probability over the whole sequence as the product of conditional probabilities (a.k.a. autoregressive decomposition [3]):
This paper is available on arxiv under CC BY 4.0 DEED license.
Authors:
(1) Woosuk Kwon, UC Berkeley with Equal contribution;
(2) Zhuohan Li, UC Berkeley with Equal contribution;
(3) Siyuan Zhuang, UC Berkeley;
(4) Ying Sheng, UC Berkeley and Stanford University;
(5) Lianmin Zheng, UC Berkeley;
(6) Cody Hao Yu, Independent Researcher;
(7) Cody Hao Yu, Independent Researcher;
(8) Joseph E. Gonzalez, UC Berkeley;
(9) Hao Zhang, UC San Diego;
(10) Ion Stoica, UC Berkeley.