paint-brush
THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALSby@scientificamerican

THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALS

by Scientific American November 3rd, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

NEUTRALITY. The apparatus needed for researches upon evident external polarity requires no very great skill or thought, but simply an apparatus to measure correctly the force of the evident repulsion or attraction; in the case of neutrality, however, the external polarity disappears, and we consequently require special apparatus, together with the utmost care and reflection in its use. From numerous researches previously made by means of the induction balance, the results of which I have already published, I felt convinced that in investigating the cause of magnetism and neutrality I should have in it the aid of the most powerful instrument of research ever brought to bear upon the molecular construction of iron, as indeed of all metals. It neglects all forces which do not produce a change in the molecular structure, and enables us to penetrate at once to the interior of a magnet or piece of iron, observing only its peculiar structure and the change which takes place during magnetization or apparent neutrality. The induction balance is affected by three distinct arrangements of molecular structure in iron and steel, by means of which we have apparent external neutrality. Fig 1 shows several polar directions of the molecules as indicated by the arrows. Poisson assumed as a necessity of his theory, that a molecule is spherical; but Dr. Joule's experimental proof of the elongation of iron by one seven-hundred and-twenty-thousandth of its length when magnetized, proves at least that its form is not spherical; and, as I am unable at present to demonstrate my own views as to its exact form, I have simply indicated its polar direction by arrows--the dotted oval lines merely indicating its limits of free elastic rotation. In Fig. 1, at A, we have neutrality by the mutual attraction of each pair of molecules, being the shortest path in which they could satisfy their mutual attractions. At B we have the case of superposed magnetism of equal external value, rendering the wire or rod apparently neutral, although a lower series of molecules are rotated in the opposite direction to the upper series, giving to the rod opposite and equal polarities. At C we have the molecules arranged in a circular chain around the axis of a wire or rod through which an electric current has passed. At D we have the evident polarity induced by the earth's directive influence when a soft iron rod is held in the magnetic meridian. At E we have a longitudinal neutrality produced in the same rod when placed magnetic west, the polarity in the latter case being transversal.
featured image - THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALS
Scientific American  HackerNoon profile picture

Scientific American Supplement, No. 392, July 7, 1883 by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALS.

THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALS.

[Footnote: Paper lately read before the Society of Telegraph Engineers and Electricians.]

By Professor D. E. HUGHES, F.R.S., Vice-President.

NEUTRALITY.

The apparatus needed for researches upon evident external polarity requires no very great skill or thought, but simply an apparatus to measure correctly the force of the evident repulsion or attraction; in the case of neutrality, however, the external polarity disappears, and we consequently require special apparatus, together with the utmost care and reflection in its use.


From numerous researches previously made by means of the induction balance, the results of which I have already published, I felt convinced that in investigating the cause of magnetism and neutrality I should have in it the aid of the most powerful instrument of research ever brought to bear upon the molecular construction of iron, as indeed of all metals. It neglects all forces which do not produce a change in the molecular structure, and enables us to penetrate at once to the interior of a magnet or piece of iron, observing only its peculiar structure and the change which takes place during magnetization or apparent neutrality.


The induction balance is affected by three distinct arrangements of molecular structure in iron and steel, by means of which we have apparent external neutrality.


Fig 1 shows several polar directions of the molecules as indicated by the arrows. Poisson assumed as a necessity of his theory, that a molecule is spherical; but Dr. Joule's experimental proof of the elongation of iron by one seven-hundred and-twenty-thousandth of its length when magnetized, proves at least that its form is not spherical; and, as I am unable at present to demonstrate my own views as to its exact form, I have simply indicated its polar direction by arrows--the dotted oval lines merely indicating its limits of free elastic rotation.


In Fig. 1, at A, we have neutrality by the mutual attraction of each pair of molecules, being the shortest path in which they could satisfy their mutual attractions. At B we have the case of superposed magnetism of equal external value, rendering the wire or rod apparently neutral, although a lower series of molecules are rotated in the opposite direction to the upper series, giving to the rod opposite and equal polarities. At C we have the molecules arranged in a circular chain around the axis of a wire or rod through which an electric current has passed. At D we have the evident polarity induced by the earth's directive influence when a soft iron rod is held in the magnetic meridian. At E we have a longitudinal neutrality produced in the same rod when placed magnetic west, the polarity in the latter case being transversal.


In all these cases we have a perfectly symmetrical arrangement, and I have not yet found a single case in well-annealed soft iron in which I could detect a heterogeneous arrangement, as supposed by Ampere, De la Rive, Weber, Wiedermann, and Maxwell.


We can only study neutrality with perfectly soft Swedish iron. Hard iron and steel retain previous magnetizations, and an apparent external neutrality would in most cases be the superposition of one magnetism upon another of equal external force in the opposite direction, as shown at B, Fig. 1. Perfectly soft iron we can easily free, by vibrations, from the slightest trace of previous magnetism, and study the neutrality produced under varying conditions.


FIG. 1.


If we take a flat bar of soft iron, of 30 or more centimeters in length, and hold it vertically (giving while thus held a few torsions, vibrations, or, better still, a few slight blows with a wooden mallet, in order to allow its molecules to rotate with perfect freedom), we find its lower end to be of strong north polarity, and its upper end south. On reversing the rod and repeating the vibrations, we find that its lower end has precisely a similar north polarity. Thus the iron is homogeneous, and its polarity symmetrical. If we now magnetize this rod to produce a strong south pole at its lower portion, we can gradually reverse this polarity, by the influence of earth's magnetism, by slightly tapping the upper extremity with a small wooden mallet. If we observe this rod by means of a direction needle at all parts, and successively during its gradual passage from one polarity to the other, there will be no sudden break into a haphazard arrangement, but a gradual and perfectly symmetrical rotation from one direction to that of the opposite polarity.


If this rod is placed east and west, having first, say, a north polarity to the right, we can gradually discharge or rotate the molecules to zero, and as gradually reverse the polarity by simply inclining the rod so as to be slightly influenced by earth's magnetism; and at no portion of this passage from one polarity to neutrality, and to that of the opposite name, will there be found a break of continuity of rotation or haphazard arrangement. If we rotate this rod slowly, horizontally or vertically, taking observations at each few degrees of rotation of an entire revolution, we find still the same gradual symmetrical change of polarity, and that its symmetry is as complete at neutrality as in evident polarity.


In all these cases there is no complete neutrality, the longitudinal polarity simply becoming transversal when the rod is east and west. F, G, H, I, J, Fig. 1, show this gradual change, H being neutral longitudinally, but polarized transversely. If, in place of the rod, we take a small square soft iron plate and allow its molecules freedom under the sole influence of the earth's magnetism, then we invariably find the polarity in the direction of the magnetic dip, no matter in what position it be held, and a sphere of soft iron could only be polarized in a similar direction Thus we can never obtain complete external neutrality while the molecules have freedom and do not form an internal closed circle of mutual attractions; and whatever theory we may adopt as to the cause of polarity in the molecule, such as Coulomb's, Poisson's, Ampere's, or Weber's, there can exist no haphazard arrangement in perfectly soft iron, as long as it is free from all external causes except the influence of the earth; consequently these theories are wrong in one of their most essential parts.


We can, however, produce a closed circle of mutual attraction in iron and steel, producing complete neutrality as long as the structure is not destroyed by some stronger external directing influence.


Oersted discovered that an external magnetic needle places itself perpendicular to an electric current; and we should expect that, if the molecules of an iron wire possessed inherent polarity and could rotate, a similar effect would take place in the interior of the wire to that observed by Oersted. Wiedermann first remarked this effect, and it has been known as circular magnetism. This circle, however, consists really in each molecule having placed itself perpendicular to the current, simply obeying Oersted's law, and thus forming a complete circle in which the mutual attractions of the molecules forming that circle are satisfied, as shown as C, Fig. 1. This wire becomes completely neutral, any previous symmetrical arrangement of polarity rotating to form its complete circle of attractions; and we can thus form in hard iron and steel a neutrality extremely difficult to break up or destroy. We have evident proof that this neutrality consists of a closed chain, or circle, as by torsion we can partially deflect them on either side; thus from a perfect externally neutral wire, producing either polarity, by simple mechanical angular displacement of the molecules, as by right or left handed torsion.


If we magnetize a wire placed east and west, it will retain this polarity until freed by vibrations, as already remarked. If we pass an electric current through this magnetized wire, we can notice the gradual rotation of the molecules, and the formation of the circular neutrality. If we commence with a weak current, gradually increasing its strength, we can rotate them as slowly as may be desired. There is no sudden break or haphazard moment of neutrality: the movements to perfect zero are accomplished with perfect symmetry throughout.


We can produce a more perfect and shorter circle of attractions by the superposition of magnetism, as at B, Fig. 1. If we magnetize a piece of steel or iron in a given direction with a strong magnetic directing power, the magnetism penetrates to a certain depth. If we slightly diminish the magnetizing power, and magnetize the rod in a contrary direction, we may reduce it to zero, by the superposition of an exterior magnetism upon one of a contrary name existing at a greater depth; and if we continue this operation, gradually diminishing the force at each reversal, we can easily superpose ten or more distinct symmetrical arrangements, and, as their mutual attractions are satisfied in a shorter circle than in that produced by electricity, it is extremely difficult to destroy this formation when once produced.


The induction balance affords also some reasons for believing that the molecules not only form a closed circle of attractions, as at B, but that they can mutually react upon each other, so as to close a circle of attractions as a double molecule, as shown at A. The experimental evidence, however, is not sufficient to dwell on this point, as the neutrality obtained by superposition is somewhat similar in its external effects.


We can produce a perfectly symmetrical closed circle of attractions of the nature of the neutrality of C, Fig. 3, by forming a steel wire into a closed circle, 10 centimeters in diameter, if this wire is well joined at its extremities by twisting and soldering. We can then magnetize this ring by slowly revolving it at the extremity of one pole of a strong permanent magnet; and, to avoid consequent poles at the part last touching the magnet, we should have a graduating wedge of wood, so that while revolving it may be gradually removed to greater distance. This wire will then contain no consequent points or external magnetism: it will be found perfectly neutral in all parts of its closed circle. Its neutrality is similar to C, Fig. 3; for if we cut this wire at any point we find extremely strong magnetic polarity, being magnetized by this method to saturation, and having retained (which it will indefinitely) its circle of attractions complete.


I have already shown that soft iron, when its molecules are allowed perfect freedom by vibration, invariably takes the polarity of the external directing influence, such as that of the earth, and it does so even with greater freedom under the influence of heat. Manufacturers of electro-magnets for telegraphic instruments are very careful to choose the softest iron and thoroughly anneal it; but very few recognize the importance as regards the position of the iron while annealing it under the earth's directing influence. The fact, however, has long since been observed.


Dr. Hooke, 1684, remarked that steel or iron was magnetized when heated to redness and placed in the magnetic meridian. I have slightly varied this experiment by heating to redness three similar steel bars, two of which had been previously magnetized to saturation, and placed separately with contrary polarity as regards each other, the third being neutral. Upon cooling, these three bars were found to have identical and similar polarity. Thus the molecules of this most rigid material, cast steel, had become free at red heat, and rotated under the earth's magnetic influence, giving exactly the same force on each; consequently the previous magnetization of two of these bars had neither augmented nor weakened the inherent polarity of their molecules. Soft iron gave under these conditions by far the greatest force, its inherent polarity being greater than that of steel.


I have made numerous other experiments bearing upon the question of neutrality, but they all confirm those I have cited, which I consider afford ample evidence of the symmetrical arrangement of neutrality.

SUPERPOSED MAGNETISM.

Knowing that by torsion we can rotate or diminish magnetism, I was anxious to obtain by its means a complete rotation from north polarity to neutrality, and from neutrality to south polarity, or to completely reverse magnetic polarity by a slight right or left torsion.


I have succeeded in doing this, and in obtaining strong reversal of polarities, by superposing one polarity given while the rod is under a right elastic torsion, with another of the opposite polarity given under a left elastic torsion, the neutral point then being reached when the rod is free from torsion. The rod should be very strongly magnetized under its first or right-hand torsion, so that its interior molecules are rotated, or, in other words, magnetized to saturation; the second magnetization in the contrary sense and torsion should be feebler, so as only to magnetize the surface, or not more than one-half its depth; these can be easily adjusted to each other so as to form a complete polar balance of force, producing, when the rod is free from torsion, the neutrality as shown at B, Fig. 1.


The apparatus needed is simply a good compound horseshoe permanent magnet, 15 centimeters long, having six or more plates, giving it a total thickness of at least 3 centimeters. We need a sufficiently powerful magnet, as I find that I obtain a more equal distribution of magnetism upon a rod or strip of iron by drawing it lengthwise over a single pole in a direction from that pole, as shown in Fig. 2; we can then obtain saturation by repeated drawings, keeping the same molecular symmetry in each experiment.


In order to apply a slight elastic torsion when magnetizing rods or wires, I have found it convenient to attach two brass clamp keys to the extremities of the rods, or simply turn the ends at right angles, as shown in the following diagram, by which means we can apply an elastic twist or torsion while drawing the rod over the pole of the permanent magnet. We can thus superpose several and opposite symmetrical structures, producing a polar north or south as desired, greatly in excess of that possible under a single or even double magnetization, and by carefully adjusting the proportion of opposing magnetisms, so that both polarities have the same external force, the rod will be at perfect external neutrality when free from torsion.


FIG. 2.


If we now hold one end of this rod at a few centimeters distance from a magnetic directive needle, we find it perfectly neutral when free of torsion, but the slightest torsion right or left at once produces violent repulsion or attraction, according to the direction of the torsion given to the rod, the iron rod or strips of hoop-iron which I use for this experiment being able, when at the distance of five centimeters from the needle, to turn it instantly 90° on either side of its zero.


The external neutrality that we can now produce at will is absolute, as it crosses the line of two contrary polarities, being similar to the zero of my electric sonometer, whose zero is obtained by the crossing of two opposing electric forces.


This rod of iron retains its peculiar powers of reversal in a remarkable degree, a condition quite different to that of ordinary magnetization, for the same rod, when magnetized to saturation under a single ordinary magnetism, loses its evident magnetism by a few elastic torsions, as I have already shown; but when it is magnetized under the double torsion with its superposed magnetism, it is but slightly reduced by variations or numerous torsions, and I have found it impossible to render this rod again free from its double polar effects, except by strongly remagnetizing it to saturation with a single polarity. The superposed magnetism then becomes a single directive force, and we can then by a few vibrations or torsions reduce the rod to its ordinary condition.


The effects of superposed magnetism and its double polarity I have produced in a variety of ways, such as by the electro-magnetic influence of coils, or in very soft iron simply by the directive influence of the earth's magnetism, reversing the rod and torsions when held in the magnetic meridian, these rods when placed magnetic west showing distinctly the double polar effects.


It is remarkable, also, that we are enabled to superpose and obtain the maximum effects on thin strips of iron from ¼ to ½ millimeter in thickness, while in thicker rods we have far less effect, being masked by the comparatively neutral state of the interior, the exterior molecules then reaching upon those of the interior, allowing them to complete in the interior their circle of attractions.


I was anxious to obtain wires which would preserve this structure against the destructive influence of torsion and vibrations, so that I could constantly employ the same wires without the comparatively long and tedious process of preparation. Soft iron soon loses the structure, or becomes enfeebled, under the constant to and fro torsions requisite where we desire a constant change of polarity, as described later in the magnetic bells. Hard steel preserves its structure, but its molecular rigidity is so great that we obtain but mere traces of any change of polarity by torsion. I have found, however, that fine cast drill steel, untempered, of the kind employed by watchmakers, is most suitable; these are generally sold in straight lengths of 30 centimeters. Wires 1 millimeter in diameter should be used, and when it is desired to increase the force, several of these wires, say, nine or ten, should be formed into a single rod or bunch.


The wire as sold is too rigid to give its maximum of molecular rotation effect. We must therefore give it two entire turns or twists to the right, and strongly magnetize it on the north pole of the magnet while under torsion. We must again repeat this operation in the contrary direction, after restoring the wire to its previous position, giving now two entire turns to the left and magnetizing it on the south pole. On restoring the wire to its original place, it will be extremely flexible, and we may now superpose several contrary polarities under contrary torsions, as already described.


The power of these wires, if properly prepared, is most remarkable, being able to reverse their polarity under torsion, as if they were completely saturated; and they preserve this power indefinitely if not touched by a magnet. It would be extremely difficult to explain the action of the rotative effects obtained in these wires under any other theory than that which I have advanced; and the absolute external neutrality that we obtain in them when the polarities are changing, we know, from their structure, to be perfectly symmetrical.


I was anxious to show, upon the reading of this paper, some mechanical movement produced by molecular rotation, consequently I have arranged two bells that are struck alternately by a polarized armature put in motion by the double polarized rod I have already described, but whose position, at three centimeters distant from the axis of the armature, remains invariably the same. The magnetic armature consists of a horizontal light steel bar suspended by its central axle; the bells are thin wine glasses, giving a clear musical tone loud enough, by the force with which they are struck, to be clearly heard at some distance. The armature does not strike these alternately by a pendulous movement, as we may easily strike only one continuously, the friction and inertia of the armature causing its movements to be perfectly dead beat when not driven by some external force, and it is kept in its zero position by a strong directive magnet placed beneath its axle.


The mechanical power obtained is extremely evident, and is sufficient to put the sluggish armature in rapid motion, striking the bells six times per second, and with a power sufficient to produce tones loud enough to be clearly heard in all parts of the hall of the Society. As this is the first direct transformation of molecular motion into mechanical movement, I am happy to show it on this occasion.


There is nothing remarkable in the bells themselves, as they evidently could be rung if the armature was surrounded by a coil, and worked by an electric current from a few cells. The marvel, however, is in the small steel superposed magnetic wire producing by slight elastic torsions from a single wire, one millimeter in diameter, sufficient force from mere molecular rotation to entirely replace the coil and electric current.

ELASTIC NATURE OF THE ETHER SURROUNDING THE MAGNETIC MOLECULES.

During these researches I have remarked a peculiar property of magnetism, viz., that not only can the molecules be rotated through any degree of arc to its maximum, or saturation, but that, while it requires a comparatively strong force to overcome its rigidity or resistance to rotation, it has a small field of its own through which it can move with excessive freedom, trembling, vibrating, or rotating through a small degree with infinitely less force than would be required to rotate it permanently on either side. This property is so marked and general that we can observe it without any special iron or apparatus.


Let us take a flat rod of ordinary hoop iron, 30 or more centimeters in length. If, while holding this vertically, we give freedom to its molecules by torsions, vibrations, or, better still, by a few blows with a wooden mallet upon its upper extremity, we find, as is well known, that its lower portion is strongly north, and its upper south. If we reverse this rod, we now find it neutral at both extremities. We might here suppose that the earth's directing force had rotated the molecules to zero, or transversely, which in reality it has done, but only to the limit of their comparatively free motion; for if we reverse the rod to its original position, its previous strong polarity reappears at both extremities, thus the central point of its free motion is inclined to the rod, giving by its free motion great symmetrical inclination and polarity in one direction, but when reversed the inclination is reduced to zero.


In Fig. 3, D shows the bar of iron when strongly polarized by earth's magnetic influence, under vibrations, with a sufficient force to have rotated its elastic center of action. C shows the same bar with its molecules at zero, or transversal, the directing force of earth being insufficient without the aid of mechanical vibration to allow them to change. The dotted lines of D suppose the molecule to be in the center of its free motion, while at C the molecules have rotated to zero, as they are prevented from further rotation by being at the extreme end of its free motion.


If, now, we hold the rod vertically, as at C, giving neutrality, and give a few slight blows with a wooden mallet to its upper extremity, we can give just the amount of freedom required for it to produce evident polarity, and we then have equal polarity, no matter which end of the bar is below, the center of its free rotation here being perfect, and the rod perfectly neutral longitudinally when held east and west. If, on the other hand, we have given too much freedom by repeated blows of the mallet, its center of free motion becomes inclined with the molecules, and we arrive at its first condition, except that it is now neutral at D and polarized at C. From this it will be seen that we can adjust this center of action, by vibrations or blows, to any point within the external directing influence.


FIG. 3.


We can perceive this effect of free rotation in a limited space in all classes of iron and steel, being far greater in soft Swedish iron than in hard iron or steel. A similar phenomenon takes place if we magnetize a rod held vertically in the direction of earth's magnetism. It then gives greater polarity than if magnetized east or west, and if magnetized in a contrary sense to earth's magnetism, it is very feebly magnetized, or, if the rod is perfectly soft, it becomes neutral after strong magnetization. This property of comparative freedom, and the rotation of its center of action, can be demonstrated in a variety of ways. One remarkable example of it consists in the telephone. All those who are thoroughly acquainted with electro-magnetism, and know that it requires measurable time to charge an electro-magnet to saturation (about one-fifteenth of a second for those employed in telegraphy), were surprised that the telephone could follow the slightest change of timbre, requiring almost innumerable changes of force per second. I believe the free rotation I have spoken of through a limited range explains its remarkable sensitiveness and rapidity of action, and, according to this view, it would also explain why loud sounding telephones can never repeat all the delicacy of timbre that is easily done with those only requiring a force comprised in the critical limits of its free rotation. This property, I have found, has a distinct critical value for each class of iron, and I propose soon to publish researches upon the molecular construction of steel and iron, in which I have made use of this very property as a guide to the quality of the iron itself.


The elastic rotation (in a limited space) of a molecule differs entirely from that known as mechanical elasticity. In perfectly soft iron we have feeble mechanical elasticity, while in tempered steel we have that elasticity at its maximum. The contrary takes place as regards molecular elasticity. In tempered steel the molecules are extremely rigid, and in soft iron its molecular elasticity is at its maximum. Its free motion differs entirely from that given it by torsion or stress. We may assume that a molecule is surrounded by continuous ether, more of the nature of a jelly than of that of a gas; in such a medium a molecule might freely vibrate through small arcs, but a rotation extending beyond its critical limit would involve a much greater expenditure of force.


The discovery of this comparatively free rotation of molecules, by means of which, as I have shown, we can (without in any degree disturbing the external mechanical elasticity of the mass) change the axes of their free motion in any direction desired, has led me into a series of researches which have only indirectly any relation with the theory of magnetism. I was extremely desirous, however, of finding an experimental evidence which in itself should demonstrate all portions of the theory, and the following experiment, I believe, answers this purpose.


Let us take a square soft iron rod, five millimeters in diameter by thirty or more centimeters in length, and force the molecules, by aid of blows from a wooden mallet, as previously described, to have their centers of free motion in one direction; the rod will (as already shown) have polarity at both ends, when held vertically; but if reversed, both ends become completely neutral.


If now we turn the rod to its first position, in which it shows strong polarity, and magnetize it while held vertically, by drawing the north pole of a sufficiently powerful permanent magnet from its upper to its lower extremity, we find that this rod, instead of having south polarity at its lower portion, as we should expect from the direction of the magnetization, is completely neutral at both extremities, but if we reverse the rod its fullest free powers of magnetization now appear in the position where it was previously neutral. Thus, by magnetization, we have completely rotated its free path of action, and find that we can rotate this path as desired in any direction by the application of a sufficient directing power.


If we take a rod as described, with its polarities evident when held vertically, and its neutrality also evident when its ends are reversed in the same magnetic field, we find that its polarity is equal at both ends, and that it is in every way symmetrical with a perfect magnet. If we gradually reverse the ends and take observations of its condition through each degree of arc passed over, we find an equal symmetrical diminution of evident external polarity, until we arrive at neutrality, when it has no external trace of inherent polarity; but its inherent polarity at once becomes evident by a simple return to its former position. Thus the rod has passed through all the changes from polarity to neutrality, and from neutrality to polarity, and these changes have taken place with complete symmetry.


The limits of this paper do not allow me to speak of the numerous theoretical evidences as shown by the use of my induction balance. I believe, however, that I have cited already experimental evidences to show that what has been attributed to coercive force is really due to molecular freedom or rigidity; that in inherent molecular polarity we have a fact admitted by Coulomb, Poisson, Ampere, De la Rive, Weber, Du Moncel, Wiedermann, and Maxwell; and that we have also experimental evidence of molecular rotation and of the symmetrical character of polarity and neutrality.


The experiments which I have brought forward in this paper, in addition to those mentioned in my paper read before the Royal Society, will, I hope, justify me in having advanced a theory of magnetism which I believe in every portion allows at least experimental evidences of its probable truth.




About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2005). Scientific American Supplement, No. 392, July 7, 1883. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/8742/pg8742-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.