Strange Adventures of Cometsby@serviss

Strange Adventures of Comets

by Garrett P. ServissMarch 28th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

The fears and legends of ancient times before Science was born, and the superstitions of the Dark Ages, sedulously cultivated for theological purposes by monks and priests, have so colored our ideas of the influence that comets have had upon the human mind that many readers may be surprised to learn that it was the apparition of a wonderful comet, that of 1843, which led to the foundation of our greatest astronomical institution, the Harvard College Observatory. No doubt the comet superstition existed half a century ago, as, indeed, it exists yet today, but in this case the marvelous spectacle in the sky proved less effective in inspiring terror than in awakening a desire for knowledge. Even in the sixteenth century the views that enlightened minds took of comets tended powerfully to inspire popular confidence in science, and Halley’s prediction, after seeing and studying the motion of the comet which appeared in 1682, that it would prove to be a regular member of the sun’s family and would be seen returning after a period of about seventy-six years, together with the fulfillment of that prediction, produced a revulsion from the superstitious notions which had so long prevailed.
featured image - Strange Adventures of Comets
Garrett P. Serviss HackerNoon profile picture

Curiosities of the Sky by Garrett Putman Serviss is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Strange Adventures of Comets

Strange Adventures of Comets

The fears and legends of ancient times before Science was born, and the superstitions of the Dark Ages, sedulously cultivated for theological purposes by monks and priests, have so colored our ideas of the influence that comets have had upon the human mind that many readers may be surprised to learn that it was the apparition of a wonderful comet, that of 1843, which led to the foundation of our greatest astronomical institution, the Harvard College Observatory. No doubt the comet superstition existed half a century ago, as, indeed, it exists yet today, but in this case the marvelous spectacle in the sky proved less effective in inspiring terror than in awakening a desire for knowledge. Even in the sixteenth century the views that enlightened minds took of comets tended powerfully to inspire popular confidence in science, and Halley’s prediction, after seeing and studying the motion of the comet which appeared in 1682, that it would prove to be a regular member of the sun’s family and would be seen returning after a period of about seventy-six years, together with the fulfillment of that prediction, produced a revulsion from the superstitious notions which had so long prevailed.

Swift’s comet. Taken at Arequipa, March 30 1892

Then the facts were made plain that comets are subject to the law of gravitation equally with the planets; that there are many which regularly return to the neighborhood of the sun (perihelion); and that these travel in orbits differing from those of the planets only in their greater eccentricity, although they have the peculiarity that they do not, like the planets, all go round the sun in the same direction, and do not keep within the general plane of the planetary system, but traverse it sometimes from above and sometimes from below. Other comets, including most of the “great” ones, appear to travel in parabolic or, in a few cases, hyperbolic orbits, which, not being closed curves, never bring them back again. But it is not certain that these orbits may not be extremely eccentric ellipses, and that after the lapse of hundreds, or thousands, of years the comets that follow them may not reappear. The question is an interesting one, because if all orbits are really ellipses, then all comets must be permanent members of the solar system, while in the contrary case many of them are simply visitors, seen once and never to be seen again. The hypothesis that comets are originally interlopers might seem to derive some support from the fact that the certainly periodic ones are associated, in groups, with the great outer planets, whose attraction appears to have served as a trap for them by turning them into elliptical orbits and thus making them prisoners in the solar system. Jupiter, owing to his great mass and his commanding situation in the system, is the chief “comet-catcher;” but he catches them not for himself, but for the sun. Yet if comets do come originally from without the borders of the planetary system, it does not, by any means, follow that they were wanderers at large in space before they yielded to the overmastering attraction of the sun. Investigation of the known cometary orbits, combined with theoretical considerations, has led some astronomers to the conclusion that as the sun travels onward through space he “picks up en route” cometary masses which, without belonging strictly to his empire, are borne along in the same vast “cosmical current” that carries the solar system.

But while no intelligent person any longer thinks that the appearance of a great comet is a token from the heavenly powers of the approaching death of a mighty ruler, or the outbreak of a devastating war, or the infliction of a terrible plague upon wicked mankind, science itself has discovered mysteries about comets which are not less fascinating because they are more intellectual than the irrational fancies that they have displaced. To bring the subject properly before the mind, let us see what the principal phenomena connected with a comet are.

At the present day comets are ordinarily “picked up” with the telescope or the photographic plate before any one except their discoverer is aware of their existence, and usually they remain so insignificant in appearance that only astronomers ever see them. Yet so great is the prestige of the word “comet” that the discovery of one of these inconspicuous wanderers, and its subsequent movements, become items of the day’s news which everybody reads with the feeling, perhaps, that at least he knows what is going on in the universe even if he doesn’t understand it. But a truly great comet presents quite a different proposition. It, too, is apt to be detected coming out of the depths of space before the world at large can get a glimpse of it, but as it approaches the sun its aspect undergoes a marvelous change. Agitated apparently by solar influence, it throws out a long streaming tail of nebulous light, directed away from the sun and looking as if blown out like a pennon by a powerful wind. Whatever may be the position of the comet with regard to the sun, as it circles round him it continually keeps its tail on the off side. This, as we shall soon see, is a fact of capital importance in relation to the probable nature of comets’ tails. Almost at the same time that the formation of the tail is observed a remarkable change takes place in the comet’s head, which, by the way, is invariably and not merely occasionally its most important part. On approaching the sun the head usually contracts. Coincidently with this contraction a nucleus generally makes its appearance. This is a bright, star-like point in the head, and it probably represents the totality of solid matter that the comet possesses. But it is regarded as extremely unlikely that even the nucleus consists of a uniformly solid mass. If it were such, comets would be far more formidable visitors when they pass near the planets than they have been found to be. The diameter of the nucleus may vary from a few hundred up to several thousand miles; the heads, on the average, are from twenty-five thousand to one hundred thousand miles in diameter, although a few have greatly exceeded these dimensions; that of the comet of 1811, one of the most stupendous ever seen, was a million and a quarter miles in diameter! As to the tails, not withstanding their enormous length—some have been more than a hundred million miles long—there is reason to believe that they are of extreme tenuity, “as rare as vacuum.” The smallest stars have been seen shining through their most brilliant portions with undiminished luster.

After the nucleus has been formed it begins to throw out bright jets directed toward the sun. A stream, and sometimes several streams, of light also project sunward from the nucleus, occasionally appearing like a stunted tail directed oppositely to the real tail. Symmetrical envelopes which, seen in section, appear as half circles or parabolas, rise sunward from the nucleus, forming a concentric series. The ends of these stream backward into the tail, to which they seem to supply material. Ordinarily the formation of these ejections and envelopes is attended by intense agitation of the nucleus, which twists and turns, swinging and gyrating with an appearance of the greatest violence. Sometimes the nucleus is seen to break up into several parts. The entire heads of some comets have been split asunder in passing close around the sun; The comet of 1882 retreated into space after its perihelion passage with five heads instead of the one that it had originally, and each of these heads had its own tail!

The possession of the spectroscope has enabled astronomers during later years to study the chemical composition of comets by analyzing their light. At first the only substances thus discovered in them were hydro-carbon compounds, due evidently to the gaseous envelopes in which some combination of hydrogen with carbon existed. Behind this gaseous spectrum was found a faint continuous spectrum ascribed to the nucleus, which apparently both reflects the sunlight and gives forth the light of a glowing solid or liquid. Subsequently sodium and iron lines were found in cometary spectra. The presence of iron would seem to indicate that some of these bodies may be much more massive than observations on their attractive effects have indicated. In some recent comets, such as Morehouse’s, in 1908, several lines have been found, the origin of which is unknown.

Without going back of the nineteenth century we may find records of some of the most extraordinary comets that man has ever looked upon. In 1811, still spoken of as “the year of the comet,” because of the wonderful vintage ascribed to the skyey visitor, a comet shaped like a gigantic sword amazed the whole world, and, as it remained visible for seventeen months, was regarded by superstitious persons as a symbol of the fearful happenings of Napoleon’s Russian campaign. This comet, the extraordinary size of whose head, greatly exceeding that of the sun itself, has already been mentioned, was also remarkable for exhibiting so great a brilliancy without approaching even to the earth’s distance from the sun. But there was once a comet (and only once—in the year 1729) which never got nearer to the sun than four times the distance of the earth and yet appeared as a formidable object in the sky. As Professor Young has remarked, “it must have been an enormous comet to be visible from such a distance.” And we are to remember that there were no great telescopes in the year 1729. That comet affects the imagination like a phantom of space peering into the solar system, displaying its enormous train afar off (which, if it had approached as near as other comets, would probably have become the celestial wonder of all human memory), and then turning away and vanishing in the depths of immensity.

In 1843 a comet appeared which was so brilliant that it could be seen in broad day close beside the sun! This was the first authenticated instance of that kind, but the occurrence was to be repeated, as we shall see in a moment, less than forty years later.

The splendid comet of 1858, usually called Donati’s, is remembered by many persons yet living. It was, perhaps, both as seen by the naked eye and with the telescope, the most beautiful comet of which we have any record. It too marked a rich vintage year, still remembered in the vineyards of France, where there is a popular belief that a great comet ripens the grape and imparts to the wine a flavor not attainable by the mere skill of the cultivator. There are “comet wines,” carefully treasured in certain cellars, and brought forth only when their owner wishes to treat his guests to a sip from paradise.

The year 1861 saw another very remarkable comet, of an aspect strangely vast and diffuse, which is believed to have swept the earth with its immense tail when it passed between us and the sun on the night of June 30th, an event which produced no other known effect than the appearance of an unwonted amount of scattered light in the sky.

The next very notable comet was the “Great Southern Comet” of 1880, which was not seen from the northern hemisphere. It mimicked the aspect of the famous comet of 1843, and to the great surprise of astronomers appeared to be traveling in the same path. This proved to be the rising of the curtain for an astronomical sensation unparalleled in its kind; for two years later another brilliant comet appeared, first in the southern hemisphere, and it too followed the same track. The startling suggestion was now made that this comet was identical with those of 1843 and 1880, its return having been hastened by the resistance experienced in passing twice through the coronal envelope, and there were some who thought that it would now swing swiftly round and then plunge straight into the sun, with consequences that might be disastrous to us on account of the “flash of heat” that would be produced by the impact. Nervous people were frightened, but observation soon proved that the danger was imaginary, for although the comet almost grazed the sun, and must have rushed through two or three million miles of the coronal region, no retardation of its immense velocity was perceptible, and it finally passed away in a damaged condition, as before remarked, and has never since appeared.

Then the probable truth was perceived—viz., that the three comets (1843, 1880, and 1882) were not one identical body, but three separate ones all traveling in the same orbit. It was found, too, that a comet seen in 1668 bore similar insignia of relationship. The natural inference was that these four bodies had once formed a single mass which had been split apart by the disruptive action of the sun. Strength was lent to this hypothesis by the fact that the comet of 1882 was apparently torn asunder during its perihelion passage, retreating into space in a dissevered state. But Prof. George Forbes has a theory that the splitting of the original cometary mass was effected by an unknown planet, probably greater than Jupiter, situated at a hundred times the earth’s distance from the sun, and revolving in a period of a thousand years. He supposes that the original comet was not that of 1668, but one seen in 1556, which has since been “missing,” and that its disruption occurred from an encounter with the supposititious planet about the year 1700. Truly from every point of view comets are the most extraordinary of adventurers!

The comet of 1882 was likewise remarkable for being visible, like its predecessor of 1843, in full daylight in close proximity to the sun. The story of its detection when almost in contact with the solar disk is dramatic. It had been discovered in the southern hemisphere only a couple of weeks before its perihelion, which occurred on September 17th, and on the forenoon of that day it was seen by Doctor Common in England, and by Doctor Elkin and Mr Finlay at the Cape of Good Hope, almost touching the sun. It looked like a dazzling white bird with outspread wings. The southern observers watched it go right into the sun, when it instantly disappeared. What had happened was that the comet in passing its perihelion point had swung exactly between the earth and the sun. On the following morning it was seen from all parts of the world close by the sun on the opposite side, and it remained thus visible for three days, gradually receding from the solar disk. It then became visible for northern observers in the morning sky before sunrise, brandishing a portentous sword-shaped tail which, if it had been in the evening sky, would have excited the wonder of hundreds of millions, but situated where it was, comparatively few ever saw it.

Daniels’ comet. August 11, 1907

The application of photography to the study of comets has revealed many curious details which might otherwise have escaped detection, or at best have remained subject to doubt. It has in particular shown not only the precise form of the tails, but the remarkable vicissitudes that they undergo. Professor Barnard’s photographs of Brooks’ comet in 1893 suggested, by the extraordinary changes in the form of the tail which they revealed, that the comet was encountering a series of obstructions in space which bent and twisted its tail into fantastic shapes. The reader will observe the strange form into which the tail was thrown on the night of October 21st. A cloud of meteors through which the comet was passing might have produced such deformations of its tail. In the photograph of Daniels’ comet of 1907, a curious striping of the tail will be noticed. The short bright streaks seen in the photograph, it may be explained, are the images of stars which are drawn out into lines in consequence of the fact that the photographic telescope was adjusted to follow the motion of the comet while the stars remained at rest.

But the adventures of comets are not confined to possible encounters with unknown obstacles. We have referred to the fact that the great planets, and especially Jupiter, frequently interfere with the motions of comets. This interference is not limited to the original alteration of their orbits from possible parabolas to ellipses, but is sometimes exercised again and again, turning the bewildered comets into elliptical paths of all degrees of eccentricity. A famous example of this kind of planetary horse-play is furnished by the story of Lexell’s missing comet. This comet was first seen in 1770. Investigation showed that it was moving in an orbit which should bring it back to perihelion every five and a half years; yet it had never been seen before and, although often searched for, has never been seen since. Laplace and Leverrier proved mathematically that in 1767 it had approached so close to Jupiter as to be involved among the orbits of his satellites. What its track had been before is not known, but on that occasion the giant planet seized the interloper, threw it into a short elliptic orbit and sent it, like an arrested vagrant, to receive sentence at the bar of the sun. On this journey it passed within less than 1,500,000 miles of the earth. The form of orbit which Jupiter had impressed required, as we have said, its return in about five and a half years; but soon after 1770 it had the misfortune a second time to encounter Jupiter at close range, and he, as if dissatisfied with the leniency of the sun, or indignant at the stranger’s familiarity, seized the comet and hurled it out of the system, or at any rate so far away that it has never since been able to rejoin the family circle that basks in the immediate rays of the solar hearth. Nor is this the only instance in which Jupiter has dealt summarily with small comets that have approached him with too little deference.

Brooks’ comet. Photographed by Barnard, October 21, 1893

The function which Jupiter so conspicuously fulfills as master of the hounds to the sun is worth considering a little more in detail. To change the figure, imagine the sun in its voyage through space to be like a majestic battleship surrounded by its scouts. Small vessels (the comets, as they are overhauled by the squadron, are taken in charge by the scouts, with Jupiter for their chief, and are forced to accompany the fleet, but not all are impressed. If a strange comet undertakes to run across Jupiter’s bows the latter brings it to, and makes prize of it by throwing it into a relatively small ellipse with the sun for its focus. Thenceforth, unless, as happened to the unhappy comet of Lexell, it encounters Jupiter again in such a way as to be diverted by him into a more distant orbit, it can never get away. About thirty comets are now known to have thus been captured by the great planet, and they are called “Jupiter’s Comet Family.” But, on the other hand, if a wandering comet crosses the wake of the chief planetary scout the latter simply drives it away by accelerating its motion and compels it to steer off into open space. The transformation of comets into meteors will be considered in the next chapter, but here, in passing, mention may be made of the strange fate of one member of Jupiter’s family, Biela’s comet, which, having become over bold in its advances to its captor, was, after a few revolutions in is impressed orbit, torn to pieces and turned into a flock of meteors.

And now let us return to the mystery of comets’ tails. That we are fully justified in speaking of the tails of comets as mysterious is proved by the declaration of Sir John Herschel, who averred, in so many words, that “there is some profound secret and mystery of nature concerned in this phenomenon,” and this profound secret and mystery has not yet been altogether cleared up. Nevertheless, the all-explaining hypothesis of Arrhenius offers us once more a certain amount of aid. Comets’ tails, Arrhenius assures us, are but another result of the pressure of light. The reader will recall the applications of this theory to the Zodiacal Light and the Aurora. In the form in which we now have to deal with it, the supposition is made that as a comet approaches the sun eruptions of vapor, due to the solar heat, occur in its nucleus. These are naturally most active on the side which is directly exposed to the sun, whence the appearance of the immense glowing envelopes that surround the nucleus on the sunward side. Among the particles of hydro-carbon, and perhaps solid carbon in the state of fine dust, which are thus set free there will be many whose size is within the critical limit which enables the light-waves from the sun to drive them away. Clouds of such particles, then, will stream off behind the advancing comet, producing the appearance of a tail. This accounts for the fact that the tails of comets are always directed away from the sun, and it also explains the varying forms of the tails and the extraordinary changes that they undergo. The speed of the particles driven before the light-waves must depend upon their size and weight, the lightest of a given size traveling the most swiftly. By accretion certain particles might grow, thus losing velocity and producing the appearance of bunches in the tail, such as have been observed. The hypothesis also falls in with the researches of Bredichin, who has divided the tails of comets into three principal classes—viz.: (1) Those which appear as long, straight rays; (2) Those which have the form of curved plumes or scimitars; (3) Those which are short, brushy, and curved sharply backward along the comet’s path. In the first type he calculates the repulsive force at from twelve to fifteen times the force of gravity; in the second at from two to four times; and in the third at about one and a half times. The straight tails he ascribes to hydrogen because the hydrogen atom is the lightest known; the sword-shaped tails to hydro-carbons; and the stumpy tails to vaporized iron. It will be seen that, if the force driving off the tails is that which Arrhenius assumes it to be, the forms of those appendages would accord with those that Bredichin’s theory calls for. At the same time we have an explanation of the multiple tails with which some comets have adorned themselves. The comet of 1744, for instance, had at one time no less than seven tails spread in a wide curved brush behind it. Donati’s comet of 1858 also had at least two tails, the principal one sword-shaped and the other long, narrow, and as straight as a rule. According to Bredichin, the straight tail must have been composed of hydrogen, and the other of some form of hydro-carbon whose atoms are heavier than those of hydrogen, and, consequently, when swept away by the storm of light-waves, followed a curvature depending upon the resultant of the forces operating upon them. The seven tails of the comet of 1744 presented a kind of diagram graphically exhibiting its complex composition, and, if we knew a little more about the constituents of a comet, we might be able to say from the amount of curvature of the different tails just what were the seven substances of which that comet consisted.

If these theories seem to the reader fantastic, at any rate they are no more fantastic than the phenomena that they seek to explain.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Garrett Putman Serviss (2004). Curiosities of the Sky. Urbana, Illinois: Project Gutenberg. Retrieved October 2022

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at, located at