paint-brush
Princeton and CMU Push AI Boundaries with the Mamba Sequence Modelby@serialization
385 reads
385 reads

Princeton and CMU Push AI Boundaries with the Mamba Sequence Model

by The Serialization PublicationDecember 15th, 2024
Read on Terminal Reader
Read this story w/o Javascript

Too Long; Didn't Read

The Mamba model introduces a selective state space architecture, achieving Transformer-quality performance with linear scaling. It offers 5× generation throughput, strong results in language, audio, and genomics, and excels at handling long sequences up to a million tokens.
featured image - Princeton and CMU Push AI Boundaries with the Mamba Sequence Model
The Serialization Publication HackerNoon profile picture

Authors:

(1) Albert Gu, Machine Learning Department, Carnegie Mellon University and with equal contribution;

(2) Tri Dao, Department of Computer Science, Princeton University and with equal contribution.

Abstract and 1 Introduction

2 State Space Models

3 Selective State Space Models and 3.1 Motivation: Selection as a Means of Compression

3.2 Improving SSMs with Selection

3.3 Efficient Implementation of Selective SSMs

3.4 A Simplified SSM Architecture

3.5 Properties of Selection Mechanisms

3.6 Additional Model Details

4 Empirical Evaluation and 4.1 Synthetic Tasks

4.2 Language Modeling

4.3 DNA Modeling

4.4 Audio Modeling and Generation

4.5 Speed and Memory Benchmarks

4.6 Model Ablations

5 Discussion

6 Conclusion and References


A Discussion: Selection Mechanism

B Related Work

C Mechanics of Selective SSMs

D Hardware-aware Algorithm For Selective SSMs

E Experimental Details and Additional Results

Abstract

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers’ computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.

1 Introduction

Foundation models (FMs), or large models pretrained on massive data then adapted for downstream tasks, have emerged as an effective paradigm in modern machine learning. The backbone of these FMs are often sequence models, operating on arbitrary sequences of inputs from a wide variety of domains such as language, images, speech, audio, time series, and genomics (Brown et al. 2020; Dosovitskiy et al. 2020; Ismail Fawaz et al. 2019; Oord et al. 2016; Poli et al. 2023; Sutskever, Vinyals, and Quoc V Le 2014). While this concept is agnostic to a particular choice of model architecture, modern FMs are predominantly based on a single type of sequence model: the Transformer (Vaswani et al. 2017) and its core attention layer (Bahdanau, Cho, and Bengio 2015) The efficacy of self-attention is attributed to its ability to route information densely within a context window, allowing it to model complex data. However, this property brings fundamental drawbacks: an inability to model anything outside of a finite window, and quadratic scaling with respect to the window length. An enormous body of research has appeared on more efficient variants of attention to overcome these drawbacks (Tay, Dehghani, Bahri, et al. 2022), but often at the expense of the very properties that makes it effective. As of yet, none of these variants have been shown to be empirically effective at scale across domains.


Recently, structured state space sequence models (SSMs) (Gu, Goel, and Ré 2022; Gu, Johnson, Goel, et al. 2021) have emerged as a promising class of architectures for sequence modeling. These models can be interpreted as a combination of recurrent neural networks (RNNs) and convolutional neural networks (CNNs), with inspiration from classical state space models (Kalman 1960). This class of models can be computed very efficiently as either a recurrence or convolution, with linear or near-linear scaling in sequence length. Additionally, they have principled mechanisms for modeling long-range dependencies (Gu, Dao, et al. 2020) in certain data modalities, and have dominated benchmarks such as the Long Range Arena (Tay, Dehghani, Abnar, et al. 2021). Many flavors of SSMs (Gu, Goel, and Ré 2022; Gu, Gupta, et al. 2022; Gupta, Gu, and Berant 2022; Y. Li et al. 2023; Ma et al. 2023; Orvieto et al. 2023; Smith, Warrington, and Linderman 2023) have been successful in domains involving continuous signal data such as audio and vision (Goel et al. 2022; Nguyen, Goel, et al. 2022; Saon, Gupta, and Cui 2023). However, they have been less effective at modeling discrete and information-dense data such as text.


We propose a new class of selective state space models, that improves on prior work on several axes to achieve the modeling power of Transformers while scaling linearly in sequence length.


Selection Mechanism. First, we identify a key limitation of prior models: the ability to efficiently select data in an input-dependent manner (i.e. focus on or ignore particular inputs). Building on intuition based on important synthetic tasks such as selective copy and induction heads, we design a simple selection mechanism by parameterizing the SSM parameters based on the input. This allows the model to filter out irrelevant information and remember relevant information indefinitely.


Hardware-aware Algorithm. This simple change poses a technical challenge for the computation of the model; in fact, all prior SSMs models must be time- and input-invariant in order to be computationally efficient. We overcome this with a hardware-aware algorithm that computes the model recurrently with a scan instead of convolution, but does not materialize the expanded state in order to avoid IO access between different levels of the GPU memory hierarchy. The resulting implementation is faster than previous methods both in theory (scaling linearly in sequence length, compared to pseudo-linear for all convolution-based SSMs) and on modern hardware (up to 3× faster on A100 GPUs).


Architecture. We simplify prior deep sequence model architectures by combining the design of prior SSM architectures (Dao, Fu, Saab, et al. 2023) with the MLP block of Transformers into a single block, leading to a simple and homogenous architecture design (Mamba) incorporating selective state spaces.


Selective SSMs, and by extension the Mamba architecture, are fully recurrent models with key properties that make them suitable as the backbone of general foundation models operating on sequences. (i) High quality: selectivity brings strong performance on dense modalities such as language and genomics. (ii) Fast training and inference: computation and memory scales linearly in sequence length during training, and unrolling the model autoregressively during inference requires only constant time per step since it does not require a cache of previous elements. (iii) Long context: the quality and efficiency together yield performance improvements on real data up to sequence length 1M.


We empirically validate Mamba’s potential as a general sequence FM backbone, in both pretraining quality and domain-specific task performance, on several types of modalities and settings:


• Synthetics. On important synthetic tasks such as copying and induction heads that have been proposed as being key to large language models, Mamba not only solves them easily but can extrapolate solutions indefinitely long (>1M tokens).


• Audio and Genomics. Mamba out-performs prior state-of-the-art models such as SaShiMi, Hyena, and Transformers on modeling audio waveforms and DNA sequences, both in pretraining quality and downstream metrics (e.g. reducing FID on a challenging speech generation dataset by more than half). In both settings, its performance improves with longer context up to million-length sequences.


• Language Modeling. Mamba is the first linear-time sequence model that truly achieves Transformer-quality performance, both in pretraining perplexity and downstream evaluations. With scaling laws up to 1B parameters, we show that Mamba exceeds the performance of a large range of baselines, including very strong modern Transformer training recipes based on LLaMa (Touvron et al. 2023). Our Mamba language model has 5× generation throughput compared to Transformers of similar size, and Mamba-3B’s quality matches that of Transformers twice its size (e.g. 4 points higher avg. on common sense reasoning compared to Pythia-3B and even exceeding Pythia-7B).


Figure 1: (Overview.) Structured SSMs independently map each channel (e.g. D = 5) of an input x to output y through a higher dimensional latent state ℎ (e.g. N = 4). Prior SSMs avoid materializing this large effective state (DN, times batch size B and sequence length L) through clever alternate computation paths requiring time-invariance: the (∆, A, B, C) parameters are constant across time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware aware algorithm to only materialize the expanded states in more efficient levels of the GPU memory hierarchy.


This paper is available on arxiv under CC BY 4.0 DEED license.