Table of Links
-
Method
-
Experiments
-
Performance Analysis
Supplementary Material
- Details of KITTI360Pose Dataset
- More Experiments on the Instance Query Extractor
- Text-Cell Embedding Space Analysis
- More Visualization Results
- Point Cloud Robustness Analysis
Anonymous Authors
- Details of KITTI360Pose Dataset
- More Experiments on the Instance Query Extractor
- Text-Cell Embedding Space Analysis
- More Visualization Results
- Point Cloud Robustness Analysis
3 TEXT-CELL EMBEDDING SPACE ANALYSIS
Fig. 2 shows the aligned text-cell embedding space via T-SNE [? ]. Under the instance-free scenario, we compare our model with Text2loc [? ] using a pre-trained instance segmentation model, Mask3D [? ], as a prior step. It can be observed that Text2Loc results in a less discriminative space, where positive cells are relatively far from the text query feature. In contrast, our IFRP-T2P effectively reduces the distance between positive cell features and text query features within the embedding space, thereby creating a more informative embedding space. This enhancement in the embedding space is critical for improving the accuracy of text-cell retrieval.
Authors:
(1) Lichao Wang, FNii, CUHKSZ ([email protected]);
(2) Zhihao Yuan, FNii and SSE, CUHKSZ ([email protected]);
(3) Jinke Ren, FNii and SSE, CUHKSZ ([email protected]);
(4) Shuguang Cui, SSE and FNii, CUHKSZ ([email protected]);
(5) Zhen Li, a Corresponding Author from SSE and FNii, CUHKSZ ([email protected]).
This paper is