This story draft by @escholar has not been reviewed by an editor, YET.

Text-Cell Embedding Space Analysis

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Table of Links

Abstract and 1. Introduction

  1. Related Work

  2. Method

    3.1 Overview of Our Method

    3.2 Coarse Text-cell Retrieval

    3.3 Fine Position Estimation

    3.4 Training Objectives

  3. Experiments

    4.1 Dataset Description and 4.2 Implementation Details

    4.3 Evaluation Criteria and 4.4 Results

  4. Performance Analysis

    5.1 Ablation Study

    5.2 Qualitative Analysis and 5.3 Text Embedding Analysis

  5. Conclusion and References


Supplementary Material

  1. Details of KITTI360Pose Dataset
  2. More Experiments on the Instance Query Extractor
  3. Text-Cell Embedding Space Analysis
  4. More Visualization Results
  5. Point Cloud Robustness Analysis


Anonymous Authors

  1. Details of KITTI360Pose Dataset
  2. More Experiments on the Instance Query Extractor
  3. Text-Cell Embedding Space Analysis
  4. More Visualization Results
  5. Point Cloud Robustness Analysis

3 TEXT-CELL EMBEDDING SPACE ANALYSIS

Fig. 2 shows the aligned text-cell embedding space via T-SNE [? ]. Under the instance-free scenario, we compare our model with Text2loc [? ] using a pre-trained instance segmentation model, Mask3D [? ], as a prior step. It can be observed that Text2Loc results in a less discriminative space, where positive cells are relatively far from the text query feature. In contrast, our IFRP-T2P effectively reduces the distance between positive cell features and text query features within the embedding space, thereby creating a more informative embedding space. This enhancement in the embedding space is critical for improving the accuracy of text-cell retrieval.


Figure 2: T-SNE visualization for the text features and cell features in the coarse stage.


Authors:

(1) Lichao Wang, FNii, CUHKSZ ([email protected]);

(2) Zhihao Yuan, FNii and SSE, CUHKSZ ([email protected]);

(3) Jinke Ren, FNii and SSE, CUHKSZ ([email protected]);

(4) Shuguang Cui, SSE and FNii, CUHKSZ ([email protected]);

(5) Zhen Li, a Corresponding Author from SSE and FNii, CUHKSZ ([email protected]).


This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks